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Executive Summary

• PLANET (ProportionaLity Analysis NEtworks Tool) is a web-server that

generates weighted differential networks for metagenomic data display-

ing altered dependencies between pairs of operational taxonomic units

(OTUs).

• The methodology underlying this tool relies on the computation of pro-

portionality values between pairs of OTUs in two different conditions,

which is a measure of the linear relationship between two variables.

• Two back-end pipelines providing specific advantages are available to tai-

lor to specific user requirements.

• The web-server is supported by a dynamic front-end built with a user-

centric approach to promote an intuitive use of the analysis pipeline.

• PLANET provides extensive network visualisation and analysis features

that enhance user experience and highlight biologically significant re-

sults.
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Abbreviations

BIOM - Biological Observation Matrix (BIOM)

CSS - Cascading Style Sheets

EBI - European Bioinformatics Institute

FDR - False Discovery Rate

GPU - Graphic Processing Unit

HTML - HyperText Markup Language

IBD - Inflammatory Bowel Disease

ICD - Inflammatory Crohn’s Disease

ID - Identifier

JSON - JavaScript Object Notation

NaN - Not a Number

OTU - Operational Taxonomic Unit

PDF - Portable Document Format

PLANET - ProportionaLity Analysis of NEtworks Tool

PNG - Portable Network Graphics

RGB - Red Green Blue

rRNA - Ribosomal Ribonucleic Acid

SVG - Scalable Vector Graphics

URL - Uniform Resource Locator

UUID - Universally Unique Identifier
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1 Background (A.T)

1.1 Metagenomics

Metagenomics is defined as the study of microbial genetic material extracted from environ-

mental studies. The development of this field stemmed from the observation that whilst our

understanding of microorganism communities is mainly based on studies of samples put in

culture, the vast majority of microbial species has never been cultured in a laboratory (Handels-

man, 2004). The key advantage of metagenomics thus resides in the fact that it is a culture-

independent method for analysing a microbial community. Advances in sequencing technolo-

gies and in particular the advent of next-generation sequencing have tremendously facilitated

the exploration of the diversity within these communities (Bragg and Tyson, 2014). A com-

monly employed tool to generate a phylogenetic profile of a microbial sample is the sequencing

of 16S ribosomal Ribonucleic Acid (16S rRNA) (Woese and Fox, 1977,Zoetendal et al., 2008).

This non-coding RNA is a component of the 30S small subunit of prokaryotic ribosomes and is

present in all prokaryotic living organisms. Its structure of interspersed, conserved and variable

regions makes it an ideal phylogenetic marker of microbial taxa (Rajendhran and Gunasekaran,

2011). Probes can hybridise to the conserved regions for amplification, whilst the hypervariable

regions in the loops mutate over time and can be used to identify species. The obtained se-

quences can be clustered by similarity into operational taxonomic units (OTUs), which are often

defined at a 97% identity threshold for the 16S rRNA sequences (Chen et al., 2013, Kuczynski

et al., 2012).

1.2 Relevance

The community of microorganisms living within a given environment is termed microbiota,

whilst the collection of their genetic material is the microbiome. More specifically, the human
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microbiota refers to the communities of microorganisms living in association with the human

body. Each body site (skin, gut or oral cavity for example) hosts its own specific microbial

community (Turnbaugh et al., 2007). They are all incredibly diverse, including bacteria, phage,

viruses or archaea. These microorganisms live symbiotically with their host and are involved

in the maintenance of health by interacting with their environment and with each other (Con-

sortium et al., 2012). In the human gut, they can contribute to energy harvesting by breaking

down polysaccharides that we are otherwise unable to digest, or promote the development of

the immune system (Sekirov et al., 2010). Disruptions of the healthy microbiota (dysbiosis)

can similarly lead to the development or aggravation of health conditions. Sokol et al. showed

that inflammatory bowel disease (IBD) patients had an unbalanced intestinal microbiota charac-

terised by a fungal community with altered composition, and additionally highlighted disease-

specific inter-kingdom network alterations (Sokol et al., 2016). In order to understand the role

of the microbiota in eubyosis and dysbiosis, we must investigate the symbiotic dependencies

between the different constituents of these complex communities.

1.3 Measures of Dependency

16S rRNA profiling studies can be used to quantify the relative abundance of each OTU within

a sample, which is determined by the number of reads in a given cluster (Bikel et al., 2015). A

commonly employed measure to assess the level of pairwise dependencies between variables

in biology is correlation (Almudevar et al., 2006). However, Lovell et al. highlighted that the

use of correlation as a measure of pairwise association in relative data is inappropriate, as two

variables being correlated in the relative data does not imply correlation in the absolute data that

gave rise to it (Lovell et al., 2015). Furthermore, one important limitation of 16S rRNA phy-

logenetic profiling is the introduction of bias by the choice of both primers and hypervariable

regions (Brooks et al., 2015), which can either enrich or select against certain OTUs. This fea-
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ture can lead to further alterations in the correlation values obtained from relative abundances,

as correlation is not subcompositionally coherent (the correlation value is dependent on the

constituents included in the analysis) (Lovell et al., 2015).

The authors of the study propose a measure of goodness of fit to proportionality as an effec-

tive alternative to correlation. The directed proportionality values for a pair of variables (A,B)

are calculated as follows:

φ(A,B) =
var(log(A/B))

var(logA)
(1)

φ(B,A) =
var(log(B/A))

var(logB)
(2)

Proportionality overcomes the problems described above by ensuring that variables that are

proportional in the relative data are also proportional in the underlying absolute data.

2 Overview of PLANET (L.A.G.)

In this user manual, we present PLANET (ProportionaLity Analysis NEtworks Tool), a freely

available web server that explores inter-taxa dependency changes between pairs of OTUs in two

metagenomic datasets, controls and cases.

PLANET incorporates the aforementioned concept of proportionality in its methodology to

highlight symbiotic relationships that are significantly altered in dysbiosis (microbial imbal-

ance) when compared to healthy controls. Thus, it can be employed as a hypothesis generator

to predict altered symbioses that might have an impact in the stability of complex microbial

communities.

This piece of software is compliant with all major web browser technologies, and can be ac-

cessed from https://msc.bc.ic.ac.uk:20164. PLANET is composed of three major components:
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• An eye-friendly, front-end web interface, containing a user input page for uploading files,

overview of the software and tutorial pages, a network retrieval tab and a contact page.

• A network visualisation component, which retrieves a weighted differential network for

result visualisation after proportionality calculation.

• A back-end execution component, composed of our core methodology (implemented in

Python) and a Flask server providing a suitable web development environment for execu-

tion.

The primary tool within PLANET is called Titan. This exploratory instrument retrieves sig-

nificant changes in proportionality measures through the provision of two metagenomic datasets

carrying abundance readings. Input files should be in either .biom or .txt format (refer to Sec-

tion 6.1 for further details). The methodology behind the generation of weighted differential

networks is based on a repeated process of sampling and proportionality calculation (φ) for all

possible OTU pairs, which allows testing for a significant change in dependency between the

two datasets (Fairclough et al., 2016). The confidence in this change is provided as a certainty

score. A summary of the implemented methodology is depicted in Figure 1 (also used in Laura

de Arroyo’s individual report), and will be discussed in more detail in Section 5 of this manual.

Prior to input file submission, the user is given the choice to run a default analysis or a

customised analysis. The default analysis runs on 2,500 iterations, an alpha value of 0.05 and

genus as its selected taxonomic level. However, these characteristics may be changed by altering

the optional arguments provided on the input page settings. The user may also prefer to run

an analysis using Pearson correlation instead of proportionality as the measure of inter-taxa

dependency. Although this is not advised for relative abundance data (Section 1.3), this option

is also provided by Titan for comparison purposes.

Titan can run on seven different taxonomy ranks (genus, species, family, order, class, phy-
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Figure 1: Summarised Methodology (Produced by L.A.G.). A graphical representation of the procedure is
shown on the left-hand side, with summarised descriptions of the different stages of the pipeline on the right. The
two tables (1) represent the original, metagenomic datasets carrying abundance readings. The curves in blue (2 and
6) represent the Bootstrap φ distributions, produced after a number of iterations, i. The significance threshold is
represented in red (6), and the true φ values (derived from proportionality calculation for case samples) are shown
as black vertical lines (6). These exemplify when the null hypothesis would be or would not be rejected. Finally,
an example of a simple differential network is shown. The blue edge indicates that there is a positive difference
between the true φ value and the median of the bootstrap φ distribution (known as ∆ value), which means that
they are less proportional. A red edge indicates a negative difference and therefore higher proportionality. The
thickness of the edge represents the confidence score, which is the proportion of iterations for which the difference
in proportionality was shown to be significant.
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lum and kingdom) and can yield both undirected or directed networks. Once files are uploaded,

the user is redirected to a self-refreshing loading page and the output appears once the job is

over. The data analysis process can take from a few minutes up to several hours, depending on

the number of sampling iterations required, server load and the size of the input files. Network

visualisation offers a permanent legend, a filter slider and search tool box. Furthermore, the

user can download any files produced during the analysis, such as temporary and intermediate

files, a log file with a summary of the run settings, and a JSON (JavaScript Object Notation)

file, which is used by our pipeline to render the final network.

PLANET offers a set of additional features aimed at enhancing user experience across our

web-page, the most relevant being an emailing functionality which eases result retrieval, a con-

tact page, and a comprehensive tutorial on how to optimise PLANET’s functionality.

3 Front-end Structure

3.1 Website Design (A.T)

The PLANET website was built on the Bootflat template (Flathemes, 2016), which combines

functionalities of the Bootstrap framework with principles of flat design. These features al-

low the website to responsively adapt its layout to any type of supporting device, as shown in

Figure 2. Examples of the dynamic nature of the layout include the format of the input contain-

ers, which can arrange horizontally or vertically, and the navigation bar that either extends or

collapses, according to screen size. The front-end is currently composed of the ten following

HTML (HyperText Markup Language) pages:

• A front-page (Figure 4, A)

• An overview page detailing the purpose and methodology of the Titan pipeline (Figure 5)

10



Figure 2: The Web Server Layout Dynamically Adapts to Different Devices. From left to right, the Figure
shows the layout of the input-page on a tablet, mobile phone, desktop and laptop. The inputs align horizontally on
the desktop and laptop, and vertically on the phone and tablet. Produced by A.T.

• A tutorial explaining how to use the PLANET tools (Figure 6)

• A Titan input page to launch an analysis (Figure 7, A)

• A network retrieval input page (Figure 7, B)

• A contact page (Figure 4, B)

• A loading page to display whilst a task is running

• Three result pages displaying either directed or undirected networks generated by a Titan

run, or networks generated from a previous run of the server (Figure 9).

The PLANET logo (Figure 3) is a reminder of the server’s acronym and its central purpose,

which is the generation of networks.The website’s theme relies on four colours, each with a

particular purpose in the overall layout. The bright blue is used to highlight key elements,
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Figure 3: PLANET Logo and Front-End Theme. The logo of the PLANET website is shown at the centre of
the Figure. The four theme colours of the website are shown below the logo. The grey boxes provide a description
of the main purpose of each colour in the overall layout. Produced by A.T.

such as links, main buttons, or figure components. Light blue is used as the navigation bar

background and font-colour of header titles. The main text is written in dark grey, which is also

the background colour of the page header. Finally, the central containers on each page and the

collapsed navigation bar have a light grey background. The personalisation of the website was

performed by adding a customised CSS (Cascading Style Sheets) file with the desired features.

The additional CSS provides new styling elements and overwrites the basic features provided

by the Bootflat template.

All pages of the website share a number of common features. The navigation bar is fixed at

the top of the viewport and scrolls with the content of the page whilst remaining discrete due to

its partial transparency. Each page contains a main header with a title and a short description of

the contents. Text and images are centered on the viewport within squared containers.

The front-page is an aesthetic introduction to the PLANET web-server. From this, the user

can directly start a Titan analysis by clicking on the central logo or visit any other page through
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the top navigation bar (excluding the results and loading pages) (Figure 4, A). The page also has

a dynamic network attached to the mouse cursor. To understand the purpose of the web-server,

the user can refer to the overview page (Figure 5), which provides a short description of the

Titan pipeline and outlines the underlying methodology.

The tutorial page provides a detailed understanding of the steps and options required to

run a Titan analysis or retrieve an existing network (Figure 6). The first section explains the

type of studies that PLANET is best suited for. The second section focuses on the features

of the input page whilst making a distinction between required and optional arguments for

clarity purposes. The options for each input are explained in detail and recommendations for

the optimal combination of parameters are also provided. The final section details the features

of the network visualisation output. Images of the website and examples of outputs illustrate a

typical user experience with the web-server.

The main input page to launch the Titan analysis is subdivided in two sections by hiding the

optional parameters. The top container displays the upload buttons allowing the user to select

files corresponding to the control and case datasets (Figure 7,A). The inputs offer the possibility

of selecting multiple files corresponding to different samples of a same condition. If the user

inputs files in text format, they need to specify the structure of the tab-delimited table (Refer to

section 6.1 for details) by indicating whether OTUs represent rows or columns (Figure 5,C3).

An email address can be provided for the user to receive a notification with a link to the output

page once the job is over.

The user can display additional options by clicking on the “more options” link. This

hide/show feature was implemented using JavaScript. The user can select the taxonomic rank

to perform the analysis on. The default is set on “Genus” and can be changed to species, family,

order, class, phylum or kingdom. Whilst the default analysis pipeline returns a network with

undirected edges (Figure 16), the user has the option to generate a directed network instead
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(Figure 17). Two sliders are provided for the numerical inputs: number of iterations (with a

default of 2500) and significance level for the statistical test (default α = 0.05). As two back-

end scripts are available for Titan, each offering specific advantages (Refer to section 6.2 for

details), the user can choose whether they want intermediate data (p-values, φ values and ∆

values) to be returned or whether they are exclusively interested in the network features. The

temporary files generated by the pipeline, such as filtered tables (Refer to section 6.1.1 for de-

tails), can also be retrieved. The server provides the option of using Pearson Correlation instead

of Proportionality as the measure of inter-OTU dependency, although we recommend choosing

Proportionality to avoid false positives (Refer to Section 5 for more details).

When the user clicks on the“Generate Network” Button at the bottom of the page, the Titan

analysis tool is launched and the user is redirected to a loading page whilst the job is running.

Each analysis has its own run-identifier (ID) which is used to generate a specific URL for the

loading page. This page informs the user that they can access the output of the analysis by

either bookmarking the loading page or by accessing the link sent to the provided email address

once the job is over. The loading page self-refreshes every 10 seconds. When the analysis is

complete, the loading page redirects the user to the result page with the same URL.

In addition to the Titan analysis pipeline that generates networks from metagenomic datasets,

the website offers a tool that allows users to retrieve network outputs from a JSON file (Figure 7,

B), which can be downloaded from a previous Titan analysis or be independently generated, as

long as it complies to PLANET’s format (Refer to Section 6.3 for details). This tool (discussed

further in Section 4.6) requires two inputs to be provided by the user:

• A file in JSON format (Figure 22)

• Whether the file contains data from a directed or an undirected network.

To visualise a typical output produced by the network retrieval tool, the user can tick the “use
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A

B

Figure 4: PLANET Home Page and Contact Page. A: Home page of the website. Users can directly access
the analysis input-page by clicking on the central PLANET logo; B: contact page. Users can send a message to the
PLANET developers by filling in the boxes provided on the page. Produced by A.T.
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Figure 5: Overview Page of the PLANET Website. The light blue navigation bar is shown at the top. The page
header is shown below. The main text is centred on the page within light grey containers. Produced by A.T.
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Figure 6: PLANET Tutorial Page. The figure shows the main page content of the tutorial. The tutorial is
divided into 4 sections:“Why use the Titan Analysis Tool”,“User Inputs”,“Network Retrieval” and “Network Vi-
sualisation”. Produced by A.T.
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A

B

Figure 7: PLANET Input Pages. A: Input-page for the Titan Analysis Pipeline. The optional parameters are
shown but can be hidden by the user by clicking on “Hide options”; B: Network-retrieval page. Produced by A.T.
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example data for network visualisation” box and launch the task. The example data provided

corresponds to an undirected weighted differential network displaying altered dependencies

between healthy individuals and patients with inflammatory bowel disease (IBD) (Morgan et al.,

2012).

Finally, the user can get in touch with the development team of the PLANET web-server

through the contact page (Figure 4, B). Two options are available; the user can either send

an email to one of the specified email addresses, or fill out the provided form, which will be

forwarded to all PLANET developers. The user should ensure that all the required fields are

filled, including email, full name and subject.

3.2 Pop-up flags (Y.K)

PLANET raises pop-up flags to alert the user regarding their requests. Concerning the contact

page, when the user clicks on the “Send a Message” Button, the page refreshes with a pop-up

appearing: “Your message was sent successfully. Thank you for your contribution. We will

contact you as soon as possible.”, for the user to know whether their message was delivered

successfully to the PLANET server email (Figure 8, A).

The input page also generates error pop-up flags for an incorrect email structure. If the user

provides an email address in the wrong format, a pop-up message appears next to the email

input box so as to provide additional information regarding the correct structure. The user can

follow these instructions to fix the error. If the user did not provide an ‘@’ sign for the email

address, the pop-up message suggests the user to do so (Figure 8, B). If the user did not provide

the email domain (i.e. the address succeeding the ‘@’ sign), the pop-up message informs the

user that the email domain is missing (Figure 8, C). These pop-ups guarantee that the email

address provided by the user is always in the right format. It also informs the user where the

error may be regarding the email structure.
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Figure 8: PLANET Pop-ups. This figure shows all the pop-ups used in PLANET. PANEL A - The pop up
message from the contact page after the submission of a message. The page provides a pop-up with a message
alertin the user that the submission has been completed. PANEL B and C show how the pop ups are used to notify
the user for the incorrect email input. Panel B - The pop-up message which informs the user that the @ sign is
missing. Panel C - The pop-up message when the user did not provide email domain for the address. Panel D
and E show the error pop-ups from the result page. The page provides a pop-up with a message, which informs
the user about the source of the error occurred during the analysis. Panel D - Error raised before proportionality
calculation. The error occurs when the user does not provide a set of input files, or a right input file format or
extension. Panel E - Error raised when the differential network does not contain any edges. The causes of this
error are more complex than those of the first error. The input files may have no edges because they do not contain
all the necessary information for the analysis, or the input files actually do not have any OTU interactions with
significant changes between the two data sets. Produced by Y.K.
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Pop-up boxes are used in the result page to provide simple descriptions of any errors that

occurred during the Titan analysis. Currently two types of error are detected. Firstly, when the

input files are in the wrong format or missing (Figure 8, D). The user receives the following

message: “ERROR occurred before the procedure. Please CHECK the INPUT file(s)”. The

second type of error is raised when the differential network has no edges (Figure 8, E). This

error is more complex than the first one. Although all cases occur when the differential network

does not have any edges, it is hard to define what the actual source of the error may be. One case

is when input files do not have any significantly altered OTU dependencies. In this situation,

input files are in the correct format and carry the appropriate information, but the analysis cannot

retrieve any pairs of OTUs with significant dependency changes in cases compared to controls.

Alternatively, an error is raised when the input files are parsed without carrying all the needed

information for the analysis. The user receives the following message: “ERROR occurred in

the procedure. Please CHECK the INPUT file(s) and the PARAMETER(s)”. Thus, if this error

is raised, we recommend running the analysis with a larger number of iterations. If the same

error is raised again, then the datasets have no significant changes in OTU dependencies i.e. no

edges. Please refer to Section 6.5 for additional information on how the result page can detect

errors that occurred in the analysis pipeline.

4 Output Interface (L.A.G.)

The output interface (otherwise known as network rendering or visualisation page) integrates

several web-browser components, including CSS, HTML, JavaScript and three JavaScript li-

braries, Sigma.js, D3.js and jQuery (Jacomy and Plique, 2015), (Bostock, 2015), (Methvin et al.,

2016).

This web page is consistent with the rest of the website, also built on the Bootflat template.
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Figure 9: Network rendering page. A screenshot of the network rendering page was taken after running an
analysis using an example IBD dataset. The output page has an extensible navigation bar at the top, and offers
a centered network container, permanent legend on the left-hand side and a collapsible side panel containing a
filter, reset button, search box, and download options. The network is generated by displaying OTUs as nodes and
proportionality changes between pairs of OTUs as edges. Node Colour - Blue nodes indicate an increase in mean
abundance in cases with respect to controls, whereas red nodes represent a decrease in mean abundance. Node
Size - Magnitude of change in mean abundance, whether it is an increase or decrease. Edge Colour - Within a
red-to-blue gradient, edge color indicates the difference between the true φ value from cases and the median of
the φ bootstrap distribution. Edge Width - Representation of the certainty score, the proportion of iterations that
presented significant changes in proportionality in cases. Produced by L.A.G.

It offers a clean, intuitive, easy to navigate structure, with collapsible navigation bar, graph

container, legend and side panel (Figure 9). The web-based network visualisation tool is easy

to use, interactive and supportive of dynamic behaviours, real-time, scalable (caters to datasets

of varying complexity and dimensions), and compatible across web browsers and a range of

electronic devices.

4.1 Sigma.js Implementation

Network retrieval was built using Sigma.js. Sigma is a specialised, graph-drawing JavaScript

library. It facilitates publishing networks on the browser and also allows for network exploration

and manipulation on the web environment. It renders the graph through the front-end of the web

application by parsing the data generated through the back-end (Jacomy and Plique, 2015).
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Getting started with Sigma is very straight-forward. This module is composed of two con-

stituents, a graph model and a controller. The graph model is responsible for data collection

and manipulation, whilst the controller offers a means for the rendering process and function

implementation. For development purposes, the package must be fully installed locally. On the

other hand, network rendering and external file parsing only require a local server (Jacomy and

Plique, 2015).

After importing Sigma to the HTML template, we must have an HTML element displaying

the Sigma container. Sigma must also be instantiated for the graph rendering process to be

initialised. Sigma’s rendering engine is very flexible and thus it can be instantiated in various

ways (Jacomy and Plique, 2015). Any functions that update or alter network content, layout

or spatialisation (such as filtering or clustering) must be defined within the Sigma instantiation

and called from the script.

Sigma has several features that makes it a powerful package to work with. It offers a wide

array of network-specific built-in functions, easing the implementation process. For instance, it

automatically adapts the size and position of the elements it adds into the container accordingly,

upon changes on container width and height. It also provides a means for zooming into and

away from the graph, node and edge clicking and hovering, amongst others. It also has a

flexible, pluggable architecture, by offering an extendable system that easily integrates plug-ins

and renderers for additional functionality. This means that any additional features can be easily

added in and customised (Jacomy and Plique, 2015).

All built-in functions and additional plug-ins used for constructing the final PLANET output

page will be described in more detail in later sections of this manual.
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4.2 Network Rendering

The ultimate goal of network retrieval is to provide a means to communicate valuable informa-

tion to the user. The final graph reveals OTUs as nodes, and their corresponding, significant pro-

portionality changes as edges, which link nodes that show changes in pair-wise dependencies.

Node and edge styles (colour and size) are also fundamental to convey additional information.

Node colour, implemented using RGB (Red Green Blue) values, represents either an in-

crease (blue) or decrease (red) in mean abundance for a specific OTU in the case samples with

respect to control samples. If mean abundance remains the same in the two conditions, then

the OTU is displayed as a grey node. Node size (ranging from 4px-20px) corresponds to the

magnitude of that abundance change, whether it is a decrease or increase in mean abundance.

Concerning edges, the colour falls within a red-to-blue gradient, indicating the average dif-

ference between the case φ values and the median of the control bootstrap distribution, a value

known as ∆. A grey edge represents a ∆ value of infinity, whereas a black edge represents a

value of ‘not a number’ (NaN) (Refer to Section 6.3 for further details). Edge width (ranging

from 0.25px to 5px) represents the certainty score (from 0 to 1), which is the proportion of

times the change in φ was deemed significant out of the total number of run iterations, i.e an

indicator of the level of certainty on a proportionality change. This means that the thicker the

edge, the higher the confidence in the proportionality change is. Refer to Figure 9 for a visual

representation of the aforementioned features.

These features connect the results collected from the methodology to a network retrieval

environment in the front-end. Sigma builds the output graph by parsing data contained in a

JSON file, printed after the processing task is over in the back-end. JSON files are generated in

Python using a manually curated JSON parser, which translates results produced by our analysis

pipeline into comprenhensive data that Sigma can render in the form of a differential network.

The JSON parser achieves the following:
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• Mean abundance changes are calculated using Python and translated into RGB (Red

Green Blue) values in order to indicate an increase or decrease in mean abundance using

blue or red nodes, respectively.

• Magnitude of abundance change is calculated and translated into node size, with a mini-

mum of 4px and a maximum of 20px.

• A red-to-blue RGB gradient represents ∆ values. ∆ readings are normalised and con-

verted to RGB values, used to represent edge colour.

• Certainty scores are translated into edge width readings, with a minimum of 0.25px and

a maximum of 5px.

To fulfill Sigma’s requirements for successful graph display, nodes are also complemented

with x and y coordinates, generated using NetworkX following a “Spring” layout (Schult and

Swart, 2008). OTU names were included as node IDs and labels, and both size and colour were

specified using the JSONparser described above. For additional information about the JSON

file format, please refer to Section 6.3.

Sigma provides a JSON-specific renderer that acquires and provides structure to external

JSON data. When this plug-in is loaded, nodes are incorporated into the container using their

node IDs (OTU names) and coordinates. Edges are added in using source (origin node) and

target (destination node) information, also provided in the JSON file. Node and edge style

information is also implemented.

4.3 Network Features

A distinction is made between Sigma built-in functions and add-ons used for customised func-

tionality. Built-in functions can be easily implemented by importing packages onto the HTML
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Figure 10: Zoom Function. The network rendering page allows the user to zoom into and away from the graph.
A - Screenshot from the original output page, B - Zoomed in image of the same network. Produced by L.A.G.

page during development. Add-ons, however, may require the loading of a plug-in or renderer

event, and additional function declarations for implementation and functioning. These add-ons

comprise the set of additional features that were developed by our group to provide the user an

extra level interactivity with the data.

4.3.1 Sigma built-in functions

• Zoom: Sigma.js provides the possibility to zoom into or away from the network when

double clicking the network container (Figure 10, A and B).

• Node Hovering: Sigma distinguishes between “Default Node colour/Size” and “Node

Hover colour/Size”. When the user hovers over a node, node style is updated from default

to its “hovered” style (which is customisable), making the node stand out. Its node label
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Figure 11: Node Hovering Function. Node hovering allows the user to dynamically detect nodes and edges
by changing their current layout styles from their default settings. A - Original output image, B - Hovered nodes
acquire a black borderline and a permanent label displaying the node’s ID (OTU label). C - Hovered edges change
color and width. Furthermore, source and target nodes acquire a black borderline and become attached to their
node labels. Produced by L.A.G.

is also accessed upon hovering (Figure 11, A and B). When the user moves the cursor

away, node style is refreshed and reverted to default.

• Edge Hovering: Similarly, when the user hovers over a edge, the node labels of its source

and target nodes are displayed, and both nodes and the corresponding edge are displayed

in their hovered styles (Figure 11, A and C). Hovering away from the label refreshes the

script and renders these components back to their default settings.

4.3.2 Network Add-ons

• Drag Nodes: This function gives the user an opportunity to interact with the network, and

move nodes and edges around during exploration (Figure 12, A and B). Nodes are initially

added into the graph container by accessing a set of x and y coordinates for each node,
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contained in the JSON file parsed by Sigma. The “Drag Nodes” plug-in allows for these

coordinates to be altered and updated accordingly, and refreshed back to default. This

feature manipulates the network frame and does not apply any changes to the original

coordinates contained in the file.

• Node-neighbours function: This function facilitates retrieval of a node and its direct

neighbours, in such a way that when the user selects a given node, the node as well as

its direct neighbours and connecting edges become highlighted, whilst the rest of the

network is dimmed (Figure 12, A and C).

• Edge Filtering: This function was built using an already existing Sigma plug-in as a

template, and carefully modified to target edge width. Edge width represents certainty

score, and the user is given the option to filter away edges according to their desired con-

fidence threshold. Certainty scores range from 0 to 1, and as the certainty score increases,

only those edges over the set threshold will be highlighted, whilst the remainder will be

hidden. This function is also linked to a reset button that retrieves the original network

display (Figure 13).

• Node Searching: A search function allows the user to search for a specific OTU by typ-

ing its name in a search box, or to retrieve a list of all significant OTUs present in the final

output. When the user selects the name of a specific constituent, it triggers a node search

by node label. If found, the node in question is highlighted and the “Node-neighbours”

function is called, featuring the selected node’s direct neighbours and dimming the re-

mainder of the graph (Figure 12, C).

• Network Display Options: Differential networks generated from proportionality calcu-

lations can be displayed as directed or undirected graphs. This option is provided on the

input page prior to running the analysis, as it determines the back-end methodology to be

28



Figure 12: “Drag Nodes” and “Node-neighbours” Functions. The user can drag nodes around the graph
container and update their positions, and retrieve a node and its direct neighbours by double clicking on a specific
OTU. A - Original Image. B - A node is selected and dragged away from its original position. The new position
updates the node’s current coordinates. C - A node is clicked and its direct neighbours and corresponding edges
are highlighted as the remainder of the graph is dimmed. This function is also initialised when the user searches
for a specific node (see side panel). Produced by L.A.G.
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Figure 13: Filter Function. The user can filter edges according to their width, which corresponds to their cer-
tainty score. Certainty score ranges between 0 and 1, to represent the weighted nature of the differential networks.
A - Network output set at a certainty threshold of 0. B - Network output set at a certainty threshold of 1. Produced
by L.A.G.

applied. This is described in detail in Section 5 of this manual. Selecting the “directed”

option retrieves a network that displays curved edges (to prevent edge overlap) with an

arrowhead. Undirected graphs have edges displayed as straight lines. PLANET also of-

fers the user the possibility to run a directed or undirected Pearson Correlation analysis

for sole comparison purposes. However, when working with abundance data, it is highly

recommendable to run a proportionality analysis instead (refer to Section 1.3). A visual

representation of these three types of data display is shown in Figure 14.

4.4 Legend

A comprehensive legend is permanently provided on the bottom left corner, and includes a

concise summary of both edge and node colour, as well as edge and node size information
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A B C

Figure 14: Network Displays. Our pipeline can generate both directed or undirected networks, both for propor-
tionality studies and Pearson correlation. Directed and undirected networks differ in the methodology applied to
generate the networks (refer to Section 5 for additional information). A - Undirected network, straight lines and
no arrowhead . B - Directed network, curved edges and arrowheads. C - Undirected correlation network, straight
lines and no arrowhead. Produced by L.A.G./A.T

(Figure 15, A).

This component of the output page was built using D3.js. D3 is a data-driven JavaScript

package, used for building any kind of graphical visualisation framework. It transforms data in

the web document using HTML, CSS and Scalable Vector Graphics (SVG) components through

the use of selectors and operators. Selectors use CSS tags to grab elements from the HTML

page. Once a tagged element is found and selected, D3 operators manipulate such elements by

appending or adding attributes, such as properties, styles or HTML content (Bostock, 2015).

The legend was built by first defining a legend-specific div element on the HTML page and

then appending and styling shapes onto the legend element. Node and edge width graphics were

built using SVG paths, and the gradient graphic was built upon an existing template provided

by D3.
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Figure 15: Legend and Side Panel The output page is composed of a permanent legend and a collapsible side
panel. A - Legend containing a comprehensive summary of the networks’ features. These are node colour, node
size, edge colour and edge width. B - Side panel, which contains a certainty score filter, reset button to reset the
network filter back to default, and a search box to facilitate node search and retrieval. The ”search tool” box is
composed of a search box and a customisable drop-down list containing all node labels (OTUs) for a specific run.
C - Side panel, download options include downloading a zip archive containing a text output file, a log file with a
summary of the run settings, a JSON file and the original files submitted by the user. Furthermore, ”export current
image” allows downloading a PNG image of the graph container. Produced by L.A.G.

4.5 Side Panel

The output page was supplemented with a collapsible side panel, implemented using jQuery

(Figure 15, B and C) (Methvin et al., 2016). This side panel includes, on its first tab, the filter

slider, reset button, and “Search Tool” box (Figure 15, B). It also offers a set of download

options (Figure 15, C).

The functionality of the filter slider is described in Section 4.3.2. A reset button is also

bound to it, allowing the user to refresh the container and return nodes and edges back to default

(Figure 13).

The “Search Tool” box was built using jQuery and includes both an on-select search box

and a drop-down menu (Figure 15, B). The drop-down function is bound to Sigma in such a

way that it accesses all node labels passed on from the JSON file. The drop down menu is
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thus customised for each independent network rendering event. This search box is bound to the

Node searching function described above.

Download options are provided for the user to gain access to all files generated throughout

data analysis (Figure 15, C). Users are provided with a zip archive containing a text file, a JSON

file, the original files provided by the user for analysis, and a log file containing summarised

run features. The zip archive may also contain temporary files and intermediate files, if the

user requested these prior to the analysis. Additional information regarding the content of

these files can be found in Section 6.3. These files can be used to retrieve the network output

through PLANET’s “Retrieve Network” tab (discussed next), or to run further analysis using

additional network manipulation and analysis softwares, such as Cytoscape (Shannon et al.,

2003) and others. Please refer to Laura de Arroyo’s personal report for additional information

on downstream, stand-alone network visualisation and manipulation softwares.

In addition to this, the “Download Current Image” button allows the user to download a PNG

(Portable Network Graphics) image of the network container (Figure 15, C). This function was

implemented using the “Snapshot” renderer event provided by Sigma. The user is free to save

the original network layout or to make changes to the graph (zoom in or out, drag nodes, select

or filter a specific set of nodes) and save these updates as an image.

4.6 Retrieving Networks

As previously outlined in Section 3.1, PLANET offers an additional tool, in conjunction to the

Titan analysis pipeline: “Retrieve your Network”. This feature allows the user to retrieve any

network output from a JSON file. This file may have been generated after running a metage-

nomic analysis using Titan, or it may be an independently generated JSON file. If the user

wishes to input their own JSON file, they should ensure that the latter is structured in the cor-

rect format (refer to Section 6.3 for additional information on the JSON output format).
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For logistics purposes, users are also required to specify whether the JSON file data cor-

responds to a directed or undirected network. Directed networks contain twice the number of

edges in a JSON file (two edges per interaction), whereas network retrieval for an undirected

graph generates only one link per OTU pair. Furthermore, directed and undirected graphs are

displayed with different layout settings (discussed in section 4.3.2). As a result, if a directed

network is retrieved as an undirected graph, edges will overlap and results will be be misleading.

It is important to bear in mind that Network Retrieval is only a network visualisation tool and

is not the equivalent to, or a replacement for the Titan pipeline. This is because the methodology

to retrieve directed vs. undirected networks differs in confidence score computation. If the user

runs an initial analysis as either directed or undirected, and wishes to explore the opposite

option, Titan should be run again with the updated settings. Details about the methodology and

how it is applied in these two scenarios is described in detail in Section 5.

5 Detailed Methodology (A.T)

In the previous section, features and functions of the network rendering page are described in

detail. The data analysis methodology generating the outputted graphs (implemented in Python)

relies on a resampling process, which allows the computation of certainty scores for the network

edges.

This section covers this methodology in detail, explaining how both undirected and directed

differential networks are retrieved. The methodology generating undirected differential net-

works is provided below and illustrated in Figure 16:

• OTUs for which all samples have abundance values of zero are initially discarded from

the analysis pipeline.

• For each OTU pair present in both datasets:
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1 2 3 4 5 6

A 0.16 0.4 0.0 0.26 0.78 1.5

B 0.0 0.0 0.1 0.8 0.0 4.7

C 0.18 0.5 0.68 0.7 0.0 0.0

D 0.0 0.0 0.0 0.0 0.0 0.0

1 2 3 4 5

A 0.11 0.6 0.1 0.26 3

B 5.2 4.6 0.0 0.1 0.43

C 0.23 1.4 0.25 0.6 0.0

D 0.46 0.52 0.0 0.38 0.72

Samples

OTUs

Samples

OTUs

CONTROLS CASES

A,B,C

(A,B);(A,C);(B,C)

A 0.16 0.4 0.0 0.26 0.78 1.5

C 0.18 0.5 0.68 0.7 0.0 0.15

A 0.11 0.0 0.0 0.26 3

C 0.23 0.0 0.25 0.6 0.0

x	non-null	 pairs y	non-null	 pairs
Bootstrap	2500	times	with	
sample	size	min(x,y)-1

Subsample	 2500	times	with	
sample	size	min(x,y)-1

φ1AC	,	...,φ2500AC

φ1CA	,	...,φ2500CA

φBootAC

Distribution

φBootCA

Distribution

.....

.....

φ1AC

φ1CA

φ2500AC

φ2500AC

Reject	H0

Reject	H0

Cannot	 reject	H0

Reject	H0

Score(A,C)	 +	1 Score(A,C)	 +	0

A

B

C

Weighted	Differential	Network

Figure 16: Summary of the Comparative Analysis Pipeline for Undirected Networks. The control and case
input tables with samples as columns and OTUs as rows are shown at the top of the Figure. OTUs crossed in red
have all-zero abundances and are discarded. The analysis below is performed for every OTU pair ((A,B), (A,C)
and (B,C)) but is only illustrated for (A,C). Samples crossed in red have abundance values of zero and are culled.
The bootstrapping and φ calculation process on the control set is repeated 2500 times to generate the directed
null distributions shown as red curves. The critical points of the distributions are shown as red dotted lines. The
subsampling and φ calculation process on the case set is repeated 2500 times to generate the directed true φ values
shown on the right. If the true φ value is outside the zone defined by the critical points, the null hypothesis (H0)
is rejected. The null hypothesis needs to be rejected for both directed φ values of an iteration for the edge score to
be incremented. Nodes of the network represent OTUs. The thicker the edge, the higher the certainty score. Blue
edges have a negative ∆, whilst red edges have a positive ∆. Produced by A.T.
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1. The minimum number (n) of non-zero samples between the control and case datasets

is computed.

2. Samples for which either or both abundance values are zero-valued are culled from

the control and case datasets.

3. The remaining non-zero samples in the control set are randomly sampled with re-

placement to generate a bootstrapped set of length (n-1) for the OTU pair.

4. Due to the asymmetry of the proportionality measure, two directed proportionality

values (φboot(A,B) and φboot(B,A)) are computed for the bootstrapped set.

5. The non-zero samples in the case dataset are randomly sampled without replacement

to generate a subsample of length (n-1) for the OTU pair.

6. The directed proportionality values (φtrue(A,B) and φtrue(B,A)) are computed for the

subsample.

• Steps 3-4 are repeated 2500 times to create a bootstrap null distribution. Steps 5-6 are

repeated 2500 times, and each true φ value generated is compared to the null distribution

for computation of the certainty score.

• A p-value, corrected for multiple-testing using False Discovery Rate (FDR) (Benjamini

and Hochberg, 1995) is calculated for each true φ value. For undirected networks, if

both directed p-values of a given iteration are smaller than the significance threshold

(α = 0.05), the change in proportionality is considered significant and the edge score is

incremented. For directed networks, each directed φ value is individually compared to its

null distribution (Figure 17).

• The final edge certainty score is the proportion of subsampling iterations for which the

change in φ was shown to be significant.
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1 2 3 4 5 6

A 0.16 0.4 0.0 0.26 0.78 1.5

B 0.0 0.0 0.1 0.8 0.0 4.7

C 0.18 0.5 0.68 0.7 0.0 0.0

D 0.0 0.0 0.0 0.0 0.0 0.0

1 2 3 4 5

A 0.11 0.6 0.1 0.26 3

B 5.2 4.6 0.0 0.1 0.43

C 0.23 1.4 0.25 0.6 0.0

D 0.46 0.52 0.0 0.38 0.72

Samples

OTUs

Samples

OTUs

CONTROLS CASES

A,B,C

(A,B);(A,C);(B,C)

A 0.16 0.4 0.0 0.26 0.78 1.5

C 0.18 0.5 0.68 0.7 0.0 0.15

A 0.11 0.0 0.0 0.26 3

C 0.23 0.0 0.25 0.6 0.0

x	non-null	 pairs y	non-null	 pairs
Bootstrap	2500	times	with	
sample	size	min(x,y)-1

Subsample	 2500	times	with	
sample	size	min(x,y)-1

φ1AC	,	...,φ2500AC

φ1CA	,	...,φ2500CA

φBootAC

Distribution

φBootCA

Distribution

.....

.....

φ1AC

φ1CA

φ2500AC

φ2500AC

Reject	H0

Reject	H0

Cannot	 reject	H0

Reject	H0

• Score(AàC)	+	1

• Score(CàA)	+	1

• Score(AàC)	+	0

• Score(CàA)	+	1

A

B

C

Weighted	Differential	Network

Figure 17: Summary of the Comparative Analysis Pipeline for Directed Networks. The control and case in-
put tables with samples as columns and OTUs as rows are shown at the top of the Figure. OTUs crossed in red have
all-zero abundances and are discarded. The analysis below is performed for every OTU pair (A,B),(A,C) and (B,C)
but is only illustrated for (A,C). Samples crossed in red have abundances of 0 and are culled. The bootstrapping
and φ calculation process on the control set is repeated 2500 times to generate the directed null distributions shown
as red curves.The critical points of the distributions are shown as red dotted lines The subsampling and φ calcula-
tion process on the case set is repeated 2500 times to generate the directed true φ values shown on the right. If the
directed true φ value is outside the zone defined by the critical points, the null hypothesis (H0) is rejected. Nodes
of the network represent OTUs. The thicker the edge, the higher the certainty score. The edge colour-gradient
indicates the value of ∆: blue edges have a negative ∆, whilst red edges have a positive ∆. Produced by A.T.
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• In addition to the certainty score, the average change in φ between the two datasets is also

computed by taking the average difference ( ∆) between the true φ values and the median

of the null distribution. If the ∆ value is negative, the true φ values in the case dataset

are on average smaller than the median of the null distribution from the control set, and

therefore the two OTUs are more proportional in the case dataset than the control dataset

(the closer φ is to 0, the stronger the proportionality). If the ∆ value is positive, the OTUs

are less proportional in the case dataset than the control dataset.

Users are given the option to measure dependencies between OTU pairs using Pearson’s

correlation instead of proportionality for comparison purposes. Two variables (x,y) are said to

be correlated if they fit the following equation:

y = mx+ c (3)

Where m is the slope of the line of y plotted against x, and c is the y-intercept. In comparison,

(x,y) are said to be proportional if they fit the following equation:

y = mx (4)

Where m is the slope of the line. Therefore, proportionality is a more stringent measure than

correlation, as variables that are proportional are also necessary correlated, but the opposite does

not hold. By using correlation, the user might gain some edges that represent true correlated

OTUs that are not proportional. However, for the reasons outlined in Section 1.3, using corre-

lation will yield a large amount of false-positive edges that are not correlated in the underlying

absolute data. Figure 14 illustrates how using Person’s correlation will output a denser network

than correlation. This effect outweighs the benefit gained from displaying correlated edges, as
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true positives and false-positives cannot be differentiated in the networks. The users are thus

advised to select proportionality as the measure of inter-taxa dependency.

6 Back-End Structure

6.1 Inputs (Y.K)

In order to implement the methodology discussed in the previous section, Titan can accept two

file extensions as inputs, “.biom” and “.txt.”. We developed parsers for each file formats. Titan

has two BIOM file parsers and one text file parser which are discussed in the following subsec-

tions. Also, Titan allows the user to input multiple files to represent a common dataset. Example

input data are presented here as well to help the user understand what PLANET expects (Figures

18 and 19). We recommend the users to check if their input files follow the accepted formats

and carry the right information. Also, the users should also check the parameters they chose for

the analysis as some parameters are related to parsing the data, and if the wrong parameters are

given, the input files can produce an error during the pipeline even though they contain the right

information.

6.1.1 BIOM File Parser (Y.K)

“.biom” is the file extension for the Biological Observation Matrix (BIOM) format and is Ti-

tan’s default input file format (McDonald et al., 2012). The BIOM file is often used in biological

studies to store numerical data such as relative abundance data (McDonald et al., 2012). It can

contain descriptions of the biological samples used in the studies and any additional informa-

tion. Thus, many tools for metagenomics, such as Qiime, use the BIOM file format to store tax-

onomic assignments of OTUs and their corresponding abundance data (Kuczynski et al., 2012).
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We decided to use the BIOM file format as the default input file format because of its wide

usage in metagenomics. Details of the BIOM format can be found at http://biom-format.org/.

The BIOM file format has multiple versions, and each of them has different ways of storing

the data, either in JSON or HDF5 formats. The Titan pipeline accepts all BIOM file formats

(Fig 20). However, the analysis can still raise an error if the inputted BIOM files do not contain

the right information, such as taxonomic assignments. Also, the BIOM files with only the

binary data (i.e. 0 and 1 as the abundance data) will cause an error in the pipeline because the

proportionality method involves calculation of logarithm, and logarithm of zero is not defined.

Thus, zeros are removed from the calculation, which leaves the data to be just one value, 1, and

makes the analysis not meaningful because variance is always 0. In fact, text file inputs with the

similar properties (i.e. binary abundance data and no taxonomic descriptions) can produce the

same errors. Please check the content of the input files before the submission. Refer to Figure

20 for the accepted BIOM file formats. Detail of the accepted text file format is described in the

Section.

Titan converts the input BIOM files into a human readable table format. The conversion

filters OTUs at a specific taxon level that the users chose for their analysis, and then extracts

the abundance data of the remaining OTUs. The converted table is used for the proportionality

calculation between pairs of OTUs.

Titan currently uses two BIOM file parsers; while one is more memory efficient because it

writes and uses temporary files, the second one is more time efficient. Both parsers generate

the same output, which is a table containing filtered OTUs and corresponding abundance data.

They both use the BIOM conversion tool from the biom-format python package (McDonald

et al., 2012).

Concerning the parser that generates temporary files, the BIOM conversion package is used

as a command line operation. The “biom convert” function from the package is used to convert
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Figure 18: PLANET Example BIOM file. The example file shows the structure of the accepted BIOM file as
well as its information. The example data is in JSON format. Thus, it contains information regarding the file itself
such as BIOM file version. The necessary fields of information for Titan analysis are the data dictionary, which
contains abundance data, and the rows and the columns dictionaries. The data dictionary should have lists, where
each list represents a data point. The first index of the list represents a row index (OTU ID) and the second index
is a column index (Sample ID) for the data. The third index of the list is the relative abundance. Rows dictionary
contains OTU id and its corresponding taxonomic assignment for each row. The column dictionary has sample IDs
and their metadata. The metadata for sample IDs is not necessary so it can be null (not provided) as shown in this
figure. HDF5 version of BIOM file contains the same data but in different structure; two data types, observation
and sample, are necessary. It is not shown in this figure because the content of the raw HDF5 file in text is not a
human readable format. The content of it can only be accessed using a parser designed for it. Produced by Y.K.

table, which is then loaded to Python for taxon filtering. The filtered table is then saved as

a temporary file, which is reloaded to Python for combining duplicate OTUs and removing

samples with only zeros. The users can download the taxon filtered table of their input BIOM

files, if they selected this parser. The taxon filtered table contains the OTU IDs replaced by

their taxonomic assignments at a specific taxon level. Thus, the table can provide the number of

OTUs from the input BIOM files with their taxonomic assignments defined at the taxon level.

On the other hand, the parser with no temporary files uses the BIOM conversion package as

a Python module. The BIOM file is loaded directly to Python and taxon filtering is done using

the metadata of the loaded BIOM file. Then, duplicate OTUs and samples with only zeros are

handled in the same way that those are handled by the parser with temporary files .

Both parsers can accept multiple input files. All the input files are parsed individually. Then,

the panda data frame outputs of the parsers are merged into a table to represent one set of data.
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The merged data frames are saved as human readable table files, if the parser with temporary

files is selected for the analysis. Concerning the parser with temporary files, one temporary

table is generated per each input file. Thus, for multiple input files, the parser with temporary

files results in a much longer analysis than the parser without temporary files.

In theory, the parser with temporary files is appropriate for larger input files because the

parser without temporary files keeps the original BIOM files in memory. However, the parsers

do not contribute hugely to the overall efficiency of the pipeline, because the overall efficiency

is mainly dependent on the proportionality calculation. Thus, the users should select the parser

with temporary files if and only if they are interested in downloading the temporary files. Thus,

Titan has the parser without temporary files as the default parser. For multiple input files, if

the users are interested in acquiring merged tables of the input files, then they should select the

parser with temporary files.

6.1.2 Text File Parser (A.T/Y.K.)

Some applications that calculate abundance data from 16S rRNA fasta files output a text file

containing a table of abundance data (Kuczynski et al., 2012). Thus, for the users with human

readable table text files, PLANET incorporates a parser for the text file table format. The input

text file should have a tab-delimited table with OTUs as rows or columns, and their abundance

data for multiple samples (Figure 19). The text file parser implements the last few components

of the BIOM file parser with temporary files. The input text file is treated as a taxon filtered

table, which is then loaded to a python environment for combining the duplicate OTUs and

removing samples with all-zero abundances. The user needs to specify the structure of the table

on the input page by indicating whether OTUs represent rows or columns. For tables with OTUs

as rows, the Pandas “read csv” function (McKinney, 2010) is applied to the inputs in order to

read the files into data frames. For tables with OTUs as columns, the data frame generated from
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Figure 19: PLANET Example text file. This figure is an example of the accepted text file. The text file is a
tab- delimited file with OTU ids as columns. Titan also accepts a text file with OTU ids as rows. The text file has
labels as the first column and the first row. Other than the labels, the table is filled with relative abundance data.
Produced by Y.K.

the input files needs to be transposed before processing by the Titan pipeline. Multiple text

input files are handled in the same way that the BIOM text input files are (Refer to the BIOM

File Parser section).

6.2 Method Implementation (A.T/Y.K)

Two python scripts were developed for performing the Titan data analysis. Each presents its

own advantages, in relation to the desired outputs. Both scripts output a JSON file required for

network visualisation, as well as a table in text format containing features of nodes and edges of

the network. One of the scripts (Algorithm 2, see below) works on all OTU pairs for each step

of the calculation, and stores the intermediate data generated by the pipeline, such as φ values,

∆ values and p-values. In contrast, Algorithm 1 completes similar sized jobs at a higher speed

because it works on all the steps of the calculation for a pair of OTUs and repeats the calculation

for the remaining pairs. However, it does not return the intermediate data. The capacity for data

retrieval in Algorithm 2 implies that the pipeline has more expensive memory requirements,
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Algorithm 1 Certainty Scoring (Y.K)
1: procedure PHICALCULATION(BIOMcontrol,BIOMcase, samplingcount, alpha)
2: OTUset = intersection(OTUsfromBIOMcontrol, OTUsfromBIOMcase)
3: OTUsetTemp = OTUset
4: for each OTU i in OTUset do
5: OTUsetTemp =remove i from OTUsetTemp
6: for each OTU j in OTUsetTemp do
7: initialise lists Phidistribution and TruePhi
8: while count less than samplingcount do
9: bootstrapped = bootstrap(i and j from BIOMcontrol)

10: subsampled = subsample(i and j from BIOMcase)
11: if Proportionality is chosen for the analysis then
12: Calculates proportionality for bootstrapped and subsampled
13: else
14: Calcualtes correlation for bootstrapped and subsampled
15: end if
16: stores the results to Phidistribution and TruePhi accordingly
17: count = count+ 1
18: end while
19: Calculation of p-values using TruePhi and Phidistribution with alpha
20: Calculation of delta using TruePhi and median(Phidistribution)
21: FDR correction of p-values using alpha
22: certainty = number of p-adjusted less than alpha
23: end for
24: end for
25: return average delta, average p-adjusted, certainty score for each pair of OTUs
26: end procedure
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Algorithm 2 Certainty Scoring (A.T)
1: procedure CERTAINTYSCORING(ControlData,CaseData,SamplingCount,α)
2: OTUset = intersection(OTUs from ControlData, OTUs from CaseData)
3: Pairs = combinations(OTUset)
4: Initialise list NonZero
5: for each Pair (x, y) in Pairs do
6: MinZero = min(non-zero samples ControlData, non-zero samples CaseData)
7: Stores MinZero to NonZero
8: end for
9: DataframeBoot,DataframeTrue = initialise empty dataframes

10: for each Pair (x, y) in Pairs do
11: xControl, xCase, yControl, yCase = remove samples with zero values
12: for i in range(0,SamplingCount) do
13: bootstrapped = bootstrap(iControl,jControl, size=NonZero(i,j)-1)
14: subsampled = subsample(iCase,jCase, size=NonZero(i,j)-1)
15: if Proportionality is True then
16: φBoot= proportionality(bootstrapped)
17: φTrue= proportionality(subsampled)
18: else
19: φBoot= correlation(bootstrapped)
20: φTrue= correlation(subsampled)
21: end if
22: Stores φBoot and φTrue to DataframeBoot and DataframeTrue

23: end for
24: end for
25: DataframePvalues,Dataframe∆ = initialise empty dataframes
26: for each Pair (x, y) in Pairs do
27: for Every φTrue do
28: Calculates p-value using distribution and median of φboot for (x,y)
29: ∆= φTrue- median(φboot distribution)
30: Stores p-value and ∆ to DataframePvalues and Dataframe∆

31: end for
32: end for
33: DataframeCorrPvalues = FDR correction of p-values
34: DataFrameCertainty = initialise empty dataframe
35: for each Pair (x, y) in Pairs do
36: Certainty = proportion of corrected p-values less than α
37: Store Certainty, avg(∆), avg(p-value) to DataFrameCertainty

38: end for
39: returnDataframeBoot/True, DataframePvalues/CorrPvalues, Dataframe∆, Certainty
40: end procedure
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Figure 20: Python Module Dependencies. These modules were used for both pipelines (described in our
previous section). Produced by Y.K/L.A.G.

and thus that the runtime is longer. By having both pipelines available through the web-server,

the user can control this trade-off between speed and data retrieval.

Both scripts have similar, shared Python package dependencies: os, sys, argparse, re, json,

NetworkX (Schult and Swart, 2008), pandas (McKinney, 2010), Numpy (Van Der Walt et al.,

2011), and statsmodels.sandbox (Seabold and Perktold, 2010). These modules and their appli-

cations are described in Figure 20.

6.3 Outputs (A.T/Y.K)

The Titan pipeline for both scripts outputs a text file, a JSON file and a log file. These are

returned as a zip file that is made available for the user to download from the result page.

Input files are also included in the zip archive, as it facilitates identification of what data sets

were initially submitted and their corresponding results. Temporary filtered tables can also be
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Figure 21: Main Output Text File Format. A - Simulated output text file format, displaying edge information:
target and source nodes, certainty score, ∆ values and Adjusted average p-value. B - Example text format from a
test run using the IBD example data. Produced by L.A.G.

produced, if the parser for temporary file retrieval is selected by the user before running the

analysis. Merged tables can be outputted if the user provided multiple input files and selected

the parser with temporary files. If the user indicated that they wish to retrieve the intermediate

data on the input-page, the corresponding files will be included in the zip file

The text file has a tab-delimited format, with one edge per line containing relevant informa-

tion about a specific pair of OTUs. From left to right, the columns of the file are as shown in

Figure 21 (A), and below (B) is a screenshot of an example text file.

For the undirected analysis, ∆ values are the average ∆ values of the two directed edges.

The text file output is designed to be used for further analysis with alternative modelling and

data manipulation platforms, such as Cytoscape. Cytoscape allows for powerful statistical anal-

ysis and more complex operations, such as clustering or topological analysis, which provide

additional information about the network and could also be used for modeling (Shannon et al.,

2003).
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Figure 22: JSON file format. A - Simulated JSON format for node (A) and edge (B) data. It displays the
information included in the output JSON file after parsing the results through our manually curated JSON parser.
It can also be a key for any users providing their own JSON files to render a graph through our “Retrieve Network”
function. B - Simulated JSON format for node (C) and edge (D) data - example JSON file. Produced by A.T/L.A.G.

The JSON file output is used for the network visualisation with Sigma on the PLANET

website. The JSON file is divided in nodes and edges. Fields for nodes and edges are listed in

Figure 22 (A and B), in no particular order, as a simulated JSON file. An example is provided

below (Figure 22, C and D). For edge colors, ∆ values are used to assign RGB values. There are

some cases where ∆ values can be infinity or NaN. Infinity ∆ values come from infinity true

φ values, which are the results of the proportionality equation. The proportionality equation

uses variance of logarithmic functions. When the denominator variance function yields a zero

value, then the φ value is infinity. An NaN φ value is the result of a logarithmic of zero. As

all zeros are removed before the calculation, ∆ values calculated by the proportionality method

should not have any NaN values. However, correlation can yield NaN values because when

all the values in data sets A and B are the same, the two data sets are not correlated, thus the

correlation function returns NaN (We used “numpy.corrcoef” for the calculation of correlation).
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Email at3912@imperial.ac.uk

Control_file(s) ['static/uploads/dc1de982-da9d-4e26-aeb6-
0bc486c1f28b/genus_healthy_kraken_mpa_
table_26Mar15.txt']

Case_file(s) ['static/uploads/dc1de982-da9d-4e26-aeb6-
0bc486c1f28b/genus_iCD_kraken_mpa_tabl
e_26Mar15.txt']

Taxon Genus

Numsampling 2500

Alpha 0.05

Directed False

Temp False

Inversion True

Method Proportionality

Intermediate	Data True

Figure 23: Log File Output for the Example IBD Data. Field names are shown in bold in the left column.
The parameters that were provided for the run are shown in the right column. Produced by A.T.

For each run of the analysis, a log file is generated with all the information regarding the

run. The log file provides a general description of the analysis (Figure 23). It has the email

address, input files path, and parameters that the user selected for the run. Each line contains

one item in the following order:

• Email address for sending the results

• Input file (control) 1 path

• Input file 2 (case) path

• Taxon level at which the analysis is run

• Number of iterations for the sampling process

• α value used for threshold of p-value significance
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Source	(OTU) Target (OTU) Value 1 Value	2 Value	3 Value	4 Value	5

Source Target 0 1 2 3 4
Klebsiella Blautia -0.1712 -0.2930 -0.2539 -0.1712 -0.1770
Klebsiella Ruminococcus -0.4733 -0.4077 -0.5482 -0.4274 -0.5254
Klebsiella Bacteroides -1.5504 -1.1307 -2.2257 -1.2901 -1.0900
Klebsiella Lachnoclostridium -0.8501 -0.6870 -0.8501 -0.5950 -0.6654
Blautia Klebsiella 1.7398 1.0795 1.2076 1.7398 1.4219
Blautia Roseburia 1.4123 1.5072 1.5518 1.5518 1.5072

Iterations

A

B

Figure 24: Intermediate Outputs Text file Format. A - Text Format Structure . B - Example of an output: ∆
values. Produced by A.T

• Output file path (which includes the run ID)

• Whether the network generated is directed or undirected

• Whether the temporary BIOM file parser was used

• For inputs in text format (if provided), whether the table was inverted to have OTUs as

rows

• Dependency measure employed in the pipeline (either proportionality or correlation)

• Whether the intermediate data is returned to the user

If the user indicated that they wish to retrieve the intermediate data, the zip file will addi-

tionally include the following files in text format:

• A table with the bootstrap φ values generated at each iteration for all OTU pairs

• A table with the true φ values generated at each iteration for all OTU pairs

• A table with the ∆ values generated at each iteration for all OTU pairs

• A table with the p-values corresponding to each true φ value for all OTU pairs

50



• A table with the p-values corrected for multiple testing using FDR (Benjamini and Hochberg,

1995)

The intermediate data files outlined above have a common structure (Figure 24). Each

row corresponds to a directed pair of OTUs, as proportionality is an asymmetrical measure

and (A,B) might have different φ values than (B,A), where A and B are OTUs. The first two

columns correspond to the source OTU and the target OTU, whilst the next columns correspond

to individual iterations. Therefore, a Titan analysis run with the default parameters will yield

intermediate data files with 2502 columns (2500 columns corresponding to all iterations). These

files are in a tab-delimited table format, and can therefore be easily processed in Excel or other

spreadsheets for further analysis.

6.4 Flask Implementation (Y.K)

Three servers are used for PLANET: Flask, Celery, and Redis (Grinberg, 2014); (Rocco and

Helmers, 2016); (Sanfilippo, 2016). Flask is a framework, developed in Python, with various

built-in functions, such as a server developer and debugger. Celery is a task queue, which runs

jobs (functions) within a server instance. Thus, the jobs can be run as background tasks. Redis

is a server that stores many different types of data in memory. It is often used as a database

and a message broker, which is delivering messages between two interfaces or applications. All

the servers are configured in Python to be connected and integrated with the proportionality

calculation. The proporportionality calculation is imported as a module and the function is

loaded to Celery.

Flask was implemented to create a server for the front-end. Thus, all the HTML pages used

for PLANET follow a Jinja2 template format as required by Flask. Flask integrates all the user

interface (the front-end), so the CSSs and JavaScripts are implemented correctly on HTMLs in
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a Flask environment. Flask connects the user interface with the functionality of the website. It

receives input files and parameters from the input page and assigns random universally unique

identifiers (UUID) for each analysis when the user clicks “Generate Network” Button in the

input page. The UUID is used to create a directory within a pre-defined uploading directory.

This directory is used to store all the outputs of the analysis. Then, input files are uploaded

to the analysis directory. Flask also generates a log file in the analysis directory. Then, Flask

sends a job to the Celery server with parameters and paths for the uploaded files. When Celery

receives a job from Flask, it assigns its worker to the job for φ calculation.

Celery uses the Redis server to store the status of the result and also as a message broker

for sending and receiving messages between Flask and Celery. Currently, 50 analyses can be

run simultaneously. Celery also handles emailing, depending on the job status. Flask module

for emailing is used, and Celery functions are used to attach emailing functionality to its work-

ers. When the email address is provided, it sends an email to the user with the URL for the

network visualisation once the requested job is completed successfully. For the cases of errors

raised during φ calculation (errors at different stages of the pipeline - parsers, edge generation,

and more. See next section), Celery sends an email to the provided email as an error notifica-

tion. The error notification has a URL that includes a description of the error raised during the

calculation (Refer to the next Section 6.5 for details).

In addition, Flask connects the front-end with Celery, so loading pages and result pages have

an access to the Celery job status. Thus, upon the completion of the analysis, Flask redirects

the user from the loading page to the result page while maintaining the same URL. Also, the

result page can flag error messages with a description of the error raised if the analysis was not

completed successfully (See next section for more detail). Upon a request for downloading files,

Flask provides the files as a response. Concerning the contact page, Flask handles the request by

sending an email to the PLANET server email with all the information provided. For network
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retrieval, Flask receives the input JSON file and the parameter for network visualisation, and it

redirects the user to the result page for network retrieval.

6.5 Error Handling (Y.K)

During the Titan analysis, errors may be raised. Currently, we are aware of two cases. One

type occurs when the input files are either in the wrong format or missing. The second type of

error is raised when the network has no edges. As the Titan analysis is run as a background task

within the Celery server, we assigned a universally unique identifier (UUID) as a job identifier

(ID) for each run of analysis. The UUID is used to keep a track of the analysis. Celery has

built-in functions which allow accessing the status of a task using its ID. In Celery, the status

of a task is either running or completed. When the job is completed, it just means that the task

is no longer running. The error state of the analysis can be accessed after the job is completed.

Celery can send a message regarding errors occurred during the pipeline to Flask, which allows

the result page to detect an error.

The result page can differentiate the type of errors because the two error types are raised

from different parts of the analysis. The first error is raised during parsing the input files. The

second error is raised during retrieving edge attributes from the differential network generated

by the calculation. Thus, the result page can alert an appropriate message for an error if occurred

during the pipeline (see Section 3.2).

7 Further Considerations

In this manual, we introduce the first version of the PLANET web server. Although the core

of the software already exists, future work could be directed both towards the improvement of

existing functions, and the implementation of additional features.
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7.1 TSV parser (Y.K)

The European Bioinformatics Institute (EBI) Metagenomics database uses .tsv as one of their

taxonomic abundance data formats. This format is very different from .txt or biom. Thus, a TSV

parser can be developed so that users can use TSV abundance files for our analysis. The TSV

format has sample id, metadata, and abundance values per line. Thus, we can have a python

script that reads the input file line by line to parse the information and generate a dataframe.

7.2 Code Efficiency (Y.K)

A special focus is put on the efficiency of the code. In the future, the code should be parallelised

and improved for an increase in efficiency, making it possible for the server to process more and

larger files at a faster speed than it currently does. One approach that we are considering is using

graphical processing unit (GPU) for the analysis pipeline calculation. The Theano package

could be applied to implement these changes (Bergstra et al., 2010). Theano creates a graph

instance of the function that needs to be computed. This graph instantiation allows the code to

be run on GPU. Although it is complex to implement, it has been known that calculations can

be much faster with GPU (Bastien et al., 2016).

7.3 Additional Network Retrieval Functions (L.A.G.)

Currently, the user is able to extract important information by visually exploring the output,

interacting with and manipulating it. We are exploring the possibility of providing additional

information to the user when clicking or searching for a specific node. Upon node selection, a

temporary, interactive panel will be made visible and display information associated to an OTU

in question, such as average p-value reported, certainty score and ∆ readings.

Alternative network visualisation environments provide the option to compute network sum-
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mary statistics, and explore more complex aspects of a network such as clustering coefficients,

centrality measures, analysis of community structures and graph topology (Shannon et al.,

2003) (Bastian et al., 2009) (Refer to Laura de Arroyo’s individual report for additional in-

formation). Currently, our software functions as a primary exploratory device, and the user is

encouraged to use the files we provide to carry out their own downstream analysis. However,

in the future, providing a means for assessing summary statistics would be an interesting space

that PLANET could tap into. Furthermore, alternative network manipulation environments em-

phasise the idea of hierarchical network structures (Shannon et al., 2003) (Bastian et al., 2009).

Based on this concept, we elaborated the possibility to provide a so called “Category filter”,

where the user would be provided the ability to filter nodes in relation to their taxonomic level

(species, genus, family, order, class, phylum, kingdom) (Shannon et al., 2003) (Jacomy and

Plique, 2015). By having this feature available to the user, it would prevent having to run

separate analyses to explore hierarchical taxonomic relationships.

7.4 Additional Download Options (L.A.G.)

Currently, the user is free to download a zip file containing all files printed during analysis, but

at present, no image is being provided to them via compressed files, neither is it shared via

their email address. This means, the only way to visualise the graph output generated by our

pipeline is by going on the web browser. Our next step would be to implement the possibility

to automatically download of an output image into the user-specific zip folder. Additional

functions would also include “exporting to the Cloud”,“exporting to Dropbox”, or a “Share

your Results” box, enabling the user to send results to a third party (Poirot et al., 2003).
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7.5 One File Analysis (A.T)

In the future, the PLANET toolkit will be complemented by an additional analysis pipeline,

which displays the true proportionality measures between pairs of OTUs in a single dataset.

Whilst a simplified version of this tool has already been developed, the sparse nature of metage-

nomic data raised complexities such as an important number of false positives, identified by

a disproportionate proportion of edges with a near zero proportionality value. Metagenomic

datasets are very zero-rich, and the process of culling samples with abundance values of zero

might leave few non-zero samples for the analysis. The remaining samples are also likely to

have abundance values of one, thus leading to the calculation of a φ value of zero. A possible

solution to limit flawed edge values would be to generate a null distribution of φ values for

every OTU pair and assess the significance of the true φ value by performing a statistical test

producing a p-value. For further details about this pipeline and the progress achieved so far,

please refer to Isabella Tanase’s individual report.

8 Concluding Remarks

In this user manual, we introduce the PLANET web-server. This software’s user interface and

back-end execution cluster have been designed and implemented using Python and web-browser

frameworks, based on the methodology developed by Fairclough et al..

PLANET’s main purpose is to provide a computation of both mean abundance and pro-

portionality changes between pairs of OTUs, and to display results visually through a freely

available web interface. Whilst this manual mainly discusses the application of PLANET for

studies of the human microbiome, the Titan analysis tool can also be employed to elucidate

changes in symbiotic dependencies in a range of environmental samples corresponding to al-

tered conditions, such as different locations or growth media amongst others. A crucial purpose
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of PLANET is therefore making the methodology developed by Fairclough et al. accessible to

the wider Metagenomics community.
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