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DB index - Davies Bouldin index

DF - Degrees of freedom

FDR - False Discovery Rate

NMR - nuclear magnetic resonance
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Abstract

Biological processes are complex temporal events with dynamic behaviors. To

understand underlying mechanisms of those processes, time series analysis are

vital. However, there is no established methodology for bioinformatics time se-

ries mainly because of the characteristics of those time series such as a small

number of time points and samples. In this study, a novel method was imple-

mented in Python and extended to include network inference features. It was

also tested for sensitivity with 81 scenarios with varying parameters. Mean

sensitivity was calculated to be reasonably high (0.8) regardless of the complex-

ity of simulated models, if the models have at least 10 replicates. The method

was successfully applied to a real experimental data set from a case-control

study of Schistosoma mansoni infection. The inferred network highlighted a

potential biomarker for the infection, lactate, and portended the methodol-

ogy’s usage as a hypothesis generator.

1 Introduction

Biological processes are temporal events with dynamic and complex behaviors. Thus, for a 

better understanding of a biological system and its underlying mechanisms, it is very important 

to study the changes of the system over a period of time. However, in bioinformatics (or omics), 

high-throughput technologies, such as RNA-Seq, microarray, and nuclear magnetic resonance 

(NMR) spectroscopy, only provide results from a single time point, so many conventional bioin-

formatics analyses were limited to a snapshot of the biological system (Voit et al., 2005). To 

investigate the changes of biological processes over time, results should be collected from mul-
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tiple time points. These measurements from multiple time points on an individual biological 

sample, which is also called as a replicate or an individual such as a patient or a mouse, can be 

referred as a time series or a time trajectory. These time series analyses can uncover the tempo-

ral systematic behavior behind the biological systems. In fact, recent studies on gene expression 

time series successfully classified genes by time shift patterns, which provided additional infor-

mation about human brain development (Yuan et al., 2011).

Even though there have been recent successes in omics time series analysis, there is no 

established (popular) analysis methodology for omics time series, possibly due to the limitations 

in (or characteristics of) omics time series (Oh et al., 2013). In fact, these limitations make the 

most of the conventional time series analysis methodologies from other fields such as finance 

inapplicable. The major limitation is that omics time trajectories are very short (usually less 

than 20 time points) when compared to those for finance or weather (Gollub et al., 2003). In 

addition, the number of replicates is often small in omics studies (Bar-Joseph, 2004). In fact, 

the difficulty of setting up a clinical experiment with many patients and the high cost of other 

biological samples such as laboratory mice can be the major reasons why the studies have a 

small number of individuals. Other limitations are highly multivariate data, noise introduced 

from assay technologies, missing values and non-uniform time sampling from experimental 

designs (Bar-Joseph, 2004; Voit et al., 2005).

With these limitations in considerations, Ebbels’ group in Imperial College has developed 

a novel method in R to analyze differentially regulated variables between two experimental 

groups, i.e. controls and cases, for short metabolic time series (unpublished). Although they 

focused on short metabolic time series data from NMR, their methodology can be applied to 

short time series from other omics (or short time series in general). This method implemented 

Smoothing-Splines Mixed-Effect (SME) approach (Berk et. al., 2011). As its name indicates, 

SME uses a smoothing spline method, which fits a  smooth and continuous function to obser-
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vations, a fundamental principle of Functional Data Analysis (Ramsay and Silverman, 2005). 

SME fits a  s moothing s pline b y E xpectation M aximization a lgorithm, w hich d etermines the 

smoothness of the fitted curve by estimating the maximum likelihood and Akaike Information 

Criterion (Dempster et al., 1977). However, as SME chooses one smoothing factor for each 

time trajectories, it can often lead to overfitting o r u nderfitting. Th us, to  re duce ch ances of 

overfitting or underfitting, Ebbels’ group developed the method which clusters time trajectories 

and uses the clusters to determine the smoothness of the spline fit c omputationally. However, 

the performance of the methodology was not analyzed with respect to the limitations of short 

time series or any other limitations (parameters).

Thus, here in this study, this differential time series method was analyzed with various 

scenarios and parameters to test its performance regarding the limitations of short time series in 

a rigorous way. The methodology was implemented in Python for its usage as a command line 

tool as well as a better efficiency. Also, the method was extended to include network inference 

features for visualization of the structure of time profile similarity/differences between different 

variables. Two types of networks can be inferred: a correlation network and a differential 

network. The inferred network can be used to perform further network analysis to get additional 

information using Cytoscape or any other network analysis tools (Shannon et al., 2003). The 

method was successfully applied to a real experimental data set as well. The primary research 

questions are as follows:

1. How does the methodology perform for variations in characteristics (i.e. limitations) of

short time series?

2. Does the methodology perform well on a real data set and can the result be used to deduce

an underlying mechanism (model)?

3. Can we draw additional information using network inference tools?
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2 Methods

The extended methodology can be divided into four main parts: clustering, smoothing spline,

permutation test, and network inference. The general overview of the methodology is described

in Fig. 1. The methodology accepts a table of time trajectories as an input. The table should

have time points as columns, and have each row representing a sample of a variable in an

experimental group. If the input table has variables as columns and has time points and samples

as rows (a standardized NMR output), then the table is transformed to have the appropriate

columns and rows. Annotations for experimental groups should be provided if they are missing

from the input table. Missing values in time trajectories are replaced by the data from the

previous non-missing time point. It is not recommended to have missing values at the first time

point of the input time profile. If the first time point is missing, then the methodology discards

that time point for the analysis.
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Figure 1: A workflow of the extended analysis methodology. This figure provides a general overview of the
methodology Input tables should contain time trajectories. Time point measurements can be missing and these
missing values are replaced by the previous time point data. A. Mean time trajectory B. Davies Bouldin index to
select the appropriate number of the clusters. C. Clustering using K-means or PAM. D. Calculation of mean time
trajectory of all members of a cluster. E. Using the cluster prototype (i.e. the mean time trajectory of the cluster),
smoothing factor is optimized. F. Significance Testing using the area between fitted curves as Test Statistics and
permutation test to calculate raw p-values. G. Benjamini and Hochberg FDR correction of the p-values for multiple
testing. Continued on the next page. 8



Figure 1. continued. H. Correlation network inference using bootstrapping. It infers a network with an edge 
representing similarity in time series between a pair of variables. I. Differential network inference using 
bootstrapping and permutation test. It infers a network with an edge representing how different cases time series to 
those of controls for a pair of variables.

2.1 Clustering

All the samples in a variable of an experimental group are used to calculate the mean time 

trajectory. Each mean time trajectory is then scaled by centering (removing the mean) and 

dividing by the standard deviation, and a distance matrix is calculated for the mean time 

trajectories. The original methodology used Kendall’s tau distance function, but in this 

extension, the user can choose their preferred distance function, but the default is Kendall’s tau 

distance function (Kendall, 1938). This distance matrix is used to cluster all the mean time 

trajectories. Partitioning Around Medoids (PAM) or K-means are used to cluster 

(Theodoridis and Koutroumbas, 2006).
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 PAM is the default clustering algorithm. It is rank based clustering algorithm and is 

more robust. K-means is based on Euclidean distances. The methodology provides the user 

a Davies Bouldin index (DB index) plot, and the user chooses the number of clusters using 

the plot (Davies and Bouldin, 1979). DB index is a ratio of distances within a cluster to the 

distances between clusters. Smaller DB index means better clustering. Thus, the number of 

clusters should be chosen so that it has subsequent numbers of clusters with an increase or 

very small decrease in DB index values. The user has to consider a good balance between DB 

index value and the number of clusters in consideration for the decision of the number of 

clusters.

2.2 Smoothing Spline

The mean of all the profiles in a cluster is calculated as a cluster prototype. Each computed 

cluster prototype is then used to computationally optimize the smoothing factor for smoothing 

spline with leave one out cross validation of time points. Here the spline function uses 

degrees of freedom, which represents the complexity of the model (higher the more complex 

the model is), as its smoothing factor. The maximum smoothing factor is equal to the 

number of time points minus one. This maximum limit restricts overfitting. The minimum 

is 2.0, which goes through all the points (over-fitting). Degrees of freedom (DF) is increased 

by 0.1 from the minimum to the maximum DF values. The optimization finds the smoothing 

factor with a local minimum root mean square error (i.e. the difference between the observed 

value and the predicted value of the spline fit). If there are multiple local minima, then the 

local minimum at the simpler model (lower DF) is chosen.
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2.3 Significance Testing
Then, for each variable, the appropriate smoothing factor determined by the previous step is 

used to model smooth spline to each experimental group. The area between the fitted curves 

of the groups is used as test statistics for significance testing. Then, time trajectories are 

randomly permuted for a number of iterations to generate a null distribution to which the 

computed test statistics are compared to calculate a p-value. Then, to correct all the p- values



2.4 Network Inference

For the variables identified as significant, a correlation network is inferred as well as a 

differential network. The correlation network shows how similar two significant variables in 

their time series regardless of experimental groups. For a pair of variables, by bootstrapping 

(sampling with replacement) n-1 samples, where n is the min-imum number of replicates of 

the two variables, is done. Then, the bootstrapped samples are used to calculate correlation 

coefficient by Pearson correlation. This bootstrapping and correlation coefficient calculation 

are re-peated for a number of times (default: 500). Then, the network is inferred with 

edges as the average of the correlation coefficients. The correlation network is, therefore, a 

co-expression/regulation/occurrence network of significantly different variables (i.e. genes, 

metabolites, or microorganisms) between controls and cases.

The differential network shows how the two variables have significantly different 

correlation association when comparing cases to controls. It uses a similar approach to the 

correlation network inference, but for the differential network inference, the two experimental 

groups are treated as independent of each other, and bootstrapping and correlation coefficient 

calculation are computed independently. This process is repeated for a number of times, as 

well. Correlation coefficients calculated from controls make a null distribution to which 

each correlation co-efficients from cases is compared to calculate raw p-values. FDR is then 

used to correct the raw p-values. The differential network has edges as p-adjusted (FDR 

corrected p-values). The differential network highlights sig-nificantly altered relationships 

between two variables when compared between controls and cases. It shows how different 

the time profiles are between the two variables in cases when compared to those in controls.
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computed for multiple hypothesis testing (family-wise error rate), False discovery rate (FDR) is 

used (Benjamini and Hochberg, 1995).

2.5 Implementation

To test the implementation of the methodology in Python, the toy data set was generated with 

the same parameters that the original method used (Table 1).
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 The toy data set has three models: linear, parabola, and trigonometry. They are 

generated with functions listed in Table 1. with parameters values also listed in Table 1. All 

the models have a Gaussian noise with standard deviation of 15. They also have non-uniform 

time sampling of 14 time points and have two experimental groups (control and treatment). 

The time points sampled were (13, 27, 34, 41, 48, 53, 55, 56, 57, 59, 61, 67, and 73 days to 

mimic a real experimental data set where some time points are closer together than others. 

Each model has 10 samples (individual time trajectories). Linear model is a null model, where 

there is no difference between control and cases (treatments). Parabola and trigonometry 

models have a difference between control and cases (Table 1). The data set was run through 

the whole methodology except the network inferences because many variables are needed for 

network inferences.

 To analyze the performance of the methodology in a more rigorous way, five models 

that are frequently observed in biological systems were generated: linear, parabola, exponential 

decay, logistic (sigmoid), and a Gaussian model to represent a sudden increase and then a 

decrease in a biological system (Table 2). 



Table 1. Toy Data Set. Linear, polynomial, and trigonometry models are used as toy data set.

The data are generated using the functions listed below. All the models have two experimental 

groups (control and case) and have 14 Time Points not uniformly sampled. They also have 

Gaussian noise with standard deviation of 15. Each model has 10 replicates. Parameters for the

functions are also listed. Linear model is a null model (no difference between control and case), 

and other models have difference between control and case. 

Model Function Parameters 

Linear_control a x + b a=0.5; b=10 

Linear_case a x+b a=0.5;b=10 

Polynomial_control a x
2
 + b x + c a=-0.2;b=15;c=50 

Polynomial_case a x
2
 + b x + c a=-0.2;b=10;c=100 

Trig_control a cos(b x) + c a=-50;b=0.16;c=100 

Trig_case a cos(b x) + c a=50;b=0.16;c=100 
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Table 2. Performance Analysis Data Set. Linear, polynomial, exponential decay, logistic, and a Gaussian

model are used for performance analysis of the methodology. The data are generated using the functions 

listed below. All the models have two experimental groups (control and case) and have Gaussian noise with

standard deviation of 3. The Test column represents the characteristics of time series models that scenarios 

are analyzing. The List column represents the list of characteristic values that are tested. There is at least one 

null test for a group (row) of scenarios. 

Scenario Model Function Test List 

1-7 Linear Effect(x)+100 Effect Size 0, 0.005, 0.007, 0.01, 0.015, 0.02, 0.04 

8-14 Parabola (1/25)(x-50)
2
+effect Effect Size 0, 0.1, 0.5, 0.75, 1.0, 1.5, 2.5 

15-21 Decay 100          Effect Size 0, 0.001, 0.0015, 0.002, 0.003, 0.005, 0.01 

22-28 Logistic    

                

Effect Size 0, 0.005, 0.007, 0.008, 0.01, 0.02, 0.05 

29-35 Gaussian 

100

            

    
Effect Size 0, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0 

36-41 Linear Effect(x)+100 Sample Size 5, 7, 10, 12, 15, 20 

42-47 Parabola (1/25)(x-50)
2
+effect Sample Size 5, 7, 10, 12, 15, 20 

48-53 Decay 100          Sample Size 5, 7, 10, 12, 15, 20 

54-59 Logistic    

                

Sample Size 5, 7, 10, 12, 15, 20 

60-65 Gaussian 

100

            

    
Sample Size 5, 7, 10, 12, 15, 20 

66-69 Decay 100          Number of 

Time Points 

5, 9, 11, 16 

70-73 Logistic    

                

Number of 

Time Points 

5, 9, 11, 16 

74-77 Gaussian 

100

            

    
Number of 

Time Points 

5, 9, 11, 16 

78-79 Logistic    

                

Non-uniform 

Time Points 

A constant_interval and 

An interval proportional to the gradient of

the function 

80-81 Gaussian 

100

            

    
Non-uniform 

Time Points 

A constant_interval and 

An interval proportional to the gradient of

the function 
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All the models have a Gaussian noise with a standard deviation of 3. The effect of variation 

of the characteristics is analyzed using many scenarios. The characteristics tested are the 

limitations of short time series such as sample size, the number of time points, and constant 

time interval. Then, for all time series profiles, variations in effect sizes, which refer to 

variations in a parameter of a time series model cases such as slope in linear model cases, and 

variations in sample sizes in cases were analyzed. In the linear model, the slope was varied. For 

the parabola, exponential decay, logistic, and Gaussian models, y-intercept (maximum), the 

rate of decay, the steepness of the curve, and center of the peak (maximum) are varied 

respectively. For more complex time series models (decay, logistic, and Gaussian models), 

variations in the number of time points and the effect of non-uniform time point sampling were 

analyzed (this time both experimental groups are under the same effect). For the default 

scenario, we have 11 time points uniformly spaced from 0 to 100, and sample size of 20. All 

the scenarios analyzed in this study are summarized in Table 2. The performance was analyzed 

by FPR and sensitivity. For all the performance analyses, for each scenario, 50 realizations of 

positives or negatives were conducted to give a sensitivity value. Then, in total 50 sensitivity 

values were collected for each scenario. A number of permutation for p-value calculation was 

500 iterations. Alpha value for the p-value cutoff was 0.05.

Finally, the real experimental data set from Li et al. is used in this study (Li et al., 2011). 

The study investigated biomarkers for Schistosomiasis using mouse model infected by 

Schistosoma mansoni. Schistosomiasis is a disease found in Asia, South America, and Africa. 

The original data set had all the metabolites extracted from urine, plasma, and fecal samples of 

10 infected mice and 10 control (healthy) mice. The data set used in this study is the selected 

metabolites from urine samples (Table 3). The selected metabolites are a subset of all the 

identified metabolites in the original study. The time trajectories have 14 non-uniformly 

sampled time points. The data was run through the whole methodology with default parameters 

including the two network inference.

15



Table 3. Real experimental data set. A list of identified metabolites of urine samples from Li et al. 

Full name Short name Chemical shift 

hippurate Hip 3.97(d);7.84(d);7.55(t);7.64(t) 

3-methyl-2-oxovalerate MOV 2.93(m);1.1(d);1.7(m);1.46(m);0.9(t) 

2-oxoadipate OAP 2.77(t);1.82(m);2.22(t) 

2-oxoisocaproate OIC 2.61(d);2.1(m); 

2-oxoisovalerate OIV 3.02(m);1.13(d) 

p-cresol glucuronide p-CG 

phenylacetylglycine PAG 7.43(m);7.37(m);3.75(d);3.68(s) 

taurine Tau 3.43(t);3.27(t) 

trimethylamine N-oxide TMA-N 3.28(s) 

3-ureidopropionic acid UPA 2.38(t);3.31(t) 

acetate Ace 1.93(s) 

arginine Arg 3.78(t);1.92(m);1.65(m);3.20(t) 

citrate Cit 2.66(d);2.54(d) 

3-carboxy-2-methyl-3-

oxopropanamine 

CMOPA 2.49(m);1.08(d);3.19(m);3.56(m);3.72(m) 

creatine CRE 3.03(s);3.92(s) 

creatinine CRT 3.03(s);4.05(s) 

dimethylamine DMA 2.72(s) 

lactate Lac 4.11(q);1.32(d) 

lysine Lys 3.78(t);1.92(m);1.47(m);3.03(t);1.72(m) 

N-acetylglycoprotein

fraction 

N-AG 2.06(s) 

2-oxoglutarate OGT 3.01(t);2.45(t) 

pyruvate Pyr 2.36(s) 

scyllo-inositol S-In 3.33(s) 

succinate Suc 2.41(s) 
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3 Results

3.1 Implementation

The implementation of the methodology was validated with the toy data set generated with 

the same parameters that were used to verify the original methodology. The implemented 

method produced a similar distance matrix and determined similar DF factors. Spline fit 

curves using the determined df factors are presented in Fig. 2. It shows that blue dots are 

mean time trajectories, and red dots are clustering prototypes. For Fig. 2A., both linear 

models were identified in the same cluster, and the spline fit works well as the predicted curve 

is a linear function. For Fig. 2B, both parabola models were identified in the same cluster, 

and spline fit curve lies really well on the red dots. For panel C and D, each trigonometry 

models was identified in a cluster of its own, and the spline curves are very different. The 

result for the significance test agreed with that for the original methodology; polynomial and 

trigonometry models identified as significant (p adjusted values were less than 0.05). This is 

expected as linear model time trajectories were sampled with the same parameters, while 

other models’ time profiles were sampled with the different parameters (Table 2).

3.2 Performance Analysis

The performance of the methodology regarding the limitations (characteristics) of short time 

series was analyzed using the five models represented in Fig. 3 right panels. Variations of 

effect sizes were tested for all the models, and sensitivity (or FPR for the null model) were 

calculated. For all the models, an increase in effect size delta increased sensitivity (which is 

expected as the two groups in a model will be more different with an increase in the effect size 

delta). Mean of FPR values were around 0.05 as expected. Then, sensitivity did not decrease 

after it reached 1.0. The overall behavior of the sensitivity plots is similar to that of a logistic 

plot. In fact, the confidence intervals (the error bars) for the effect size delta around the 

midpoint of the sigmoid are much larger than those of the ends. 
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Figure 2: Spline Fits of the toy data set. Each panel represents one cluster. A. linear model. B. parabola model.
C. trigonometry model. D. trigonometry model. Blue dots represent mean time trajectories. Red dots represent
cluster prototypes. If there are no red dots, then the cluster contains only one member (C and D). Yellow lines
represent spline fit to cluster prototype. Matplotlib python package was used to plot.
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 Sample sizes of the models were varied to test the effect of smaller samples (Figure 4). 

All the models de-creased in sensitivity with a decrease in the number of samples in the 

experiment. Still, the sensitivity did notdecrease to a very low value even with just 5 samples 

(above 0.5 mean sensitivity). Also, the error bars’ widths (i.e. confidence interval) decreased 

with an increase in sample size.

For more complex models, the effect of the number of time points was investigated. 

With a decrease in the number of time points, all the models had a decrease in sensitivity. 

While the decay model had mean of sensitivity values decreased to 0.9, the other models had 

their mean of sensitivity values decreased to approximately 0.15 with the minimum number of 

time points tested (5 time points).

For non-uniform time point sampling, negative results were collected. Only logistic and 

Gaussian models were analyzed because they are the most complex models with their time 

point (from the number of time point analyses) having a drastic effect on sensitivity values. 

However, non-uniform time sampling, which was designed to improve the sensitivity value, 

resulted in lower sensitivity value (Table 4). Negative results for the non-uniform time point 

sampling. (I am currently running more results to see if the results are actually negative or it 

was because I chose the wrong time points for the analyses). Both of the models had their 

sensitivity values decreased by approximately 0.15. Also, the confidence intervals are very 

similar in all the models.

19

The lowest effect size delta with its 90% confidence interval including 1.0 sensitivity was chosen 

to generate the right panels. As the right panels of Fig 3. show, 1.0 sensitivity was reached with 

a detectable difference. A1 has 0.02 as effect size delta, and 1.5, 0.005, 0.02, and 0.5 for B1, C1, 

D1, and E1 respectively. These effect sizes are used as default values for the further 

performance analyses of the effect of sample size and number of time points.



Figure 3: Analyses on Effect Sizes. Panels starting with the same letter represent the same model. Panels 
ending with 0s are effect size delta vs. sensitivity plots. Panels ending with 1s are the visual representation of the 
appropriate model with the lowest effect size delta with a sensitivity of 1.0 (or near 1.0). A – linear model with its 
slope as the effect size, B – parabola model with its y-intercept as the effect size, C – decay model with its rate of 
decay as the effect size, D – logistic model with its steepness as the effect size, E – Gaussian model with its center 
as the effect size. Error bars on the left panels represent 90% confidence i nterval. The purple l ines on the right 
panels represent cases and the blue lines represent controls. A1 has effect size delta of 0.02, B1 has 1.5, C1 has 
0.005, D1 has 0.02, and E1 has 0.5 as their effect size delta. These effect sizes are used for the further performance 
analyses of the effect of sample size and number of time points. Left panels were plotted using matplotlib, and the

rightpanels were plotted using Mathematica. 20



Figure 4: Analyses on Sample Sizes. The figure has five subplots and their titles above indicate their models.
The plots have sensitivity as y values and sample sizes as x values. Error bars represent 90% confidence interval.
Plots were plotted with matplotlib package.

Figure 5: Analyses on Number of Time Points. The figure has three subplots and their titles above indicate their
models. The plots have sensitivity as y values and sample sizes as x values. Error bars represent 90% confidence
interval. Plots were plotted with matplotlib package.
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Table 4. Non-uniform Time Sampling.

Sensitivity column shows mean of 50

sensitivity values with a 90% confidence 

interval. The values are rounded to three 

decimal places. 

Model Sensitivity 

Logistic_Uniform 0.466 0.099 

Logistic_Non-uniform 0.217 0.075 

Gaussian_Uniform 0.511 0.096 

Gaussian_Non-uniform 0.362 0.080 
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3.3 Real Data Analysis

The methodology was applied to a real experimental data set from Li et al. The result was 

comparable to the result acquired from the original methodology (Table 5). All of the 

significant metabolites from the python package agree with those from the R package. P-

adjusted values are only slightly different as well as test statistics.
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works were inferred (Fig. 6). The top left panel shows the network of correlation values 

greater than 0.8, so the edges in the network represent highly positively correlated 

associations. In other words, they have very similar time trajectories. In fact, the edges are 

mostly between PAG and itself or p-CG and itself. As highly correlated associations are 

between the same metabolites, this supports that the network inferred has edges representing 

sim-ilarity in time trajectories. The reason that the data has several variables for each 

metabolite is that each metabolite gives rise to several signals in the NMR spectrum.

The differential network provides a different layer of information. It shows how the 

association between two variables (metabolites) in cases is different from the association 

between them in controls. In other words, a significant edge shows that time profiles 

between two variables in cases is much different or less similar when compared to those in 

controls. For the network on the bottom panel, all the edges are significant, so they repre-

sent significantly altered associations between the two significantly altered metabolites when 

controls and cases are compared. Red colors show negative associations, and green colors 

represent positive associations. For not significantly altered relationships (the top right 

panel), it shows that there is no statistically significant evidence to reject that the association 

between the two variables is altered. In other words, the interactions between the two 

variables are not significantly altered (at least statistically). Many nodes such as UPA 3.31 

and Hip 7.64 are present in both differential networks. Lac 4.11 is notable because it has 

mostly negative associations in the signif-icant network, while it has mostly positive 

associations in the non-significant network. As it has edges in red color ranges for the 

significant network, it shows that time series correlations between lactate and other 

metabolites are significantly decreased in diseased (case) mice when compared to those in 

control mice. In other words, the time profiles between lactate and other metabolites in cases 

are more different (or less similar) than those in controls.



Table 5. Significant Metabolites. Left three columns are the result of the implemented python 

package and right three columns are the results from the original R package developed by 

Ebbels’ group. Both of the three columns are ordered by the alphabetical order of metabolites. 

P-adjusted values were rounded to three decimal places. Test statistics were rounded to two

decimal places. 

metabolites p-adjusted Test 

statistics 

metabolites p-adjusted Test 

statistics 

Hip_7.55_t 0.004 1096.70 Hip_7.55_t 0.011 1097.94 

Hip_7.64_t 0.017 474.39 Hip_7.64_t 0.011 474.83 

Hip_7.84_d 0.010 1061.65 Hip_7.84_d 0.011 1062.85 

Lac_4.11_q 0.010 1852.45 Lac_4.11_q 0.011 1852.11 

N-AG_2.06_s 0.017 743.01 N.AG_2.06_s 0.011 745.86 

OAP_2.22_t 0.028 510.87 OAP_2.22_t 0.036 510.87 

p.CG_2.3_s 0.000 1102.85 p.CG_2.3_s 0.001 1107.19 

p.CG_7.06_d 0.000 770.75 p.CG_7.06_d 0.003 775.20 

p.CG_7.23_d 0.000 1033.47 p.CG_7.23_d 0.003 1036.53 

PAG_3.68_s 0.004 2783.05 PAG_3.68_s 0.001 2819.26 

PAG_3.75_d 0.000 4772.53 PAG_3.75_d 0.001 4824.12 

PAG_7.37_m 0.000 3213.47 PAG_7.37_m 0.000 3225.34 

PAG_7.43_m 0.000 2054.76 PAG_7.43_m 0.000 2062.36 

Pyr_2.36_s 0.000 512.66 Pyr_2.36_s 0.003 512.11 

Tau_3.43_t 0.011 3165.91 Tau_3.43_t 0.021 3242.72 

UPA_2.38_t 0.000 1726.01 UPA_2.38_t 0.004 1726.00 

UPA_3.31_t 0.011 1504.53 UPA_3.31_t 0.011 1504.96 

The significantly identified metabolites were then used to infer networks. Correlation network and differential net-
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4 Discussion
In this study, a preexisting method for omics short time series is reviewed, tested, and 

extended. It was also imple-mented in Python and extended to include network inference 

features to provide an additional layer of information. The implementation was successful as 

the results from the implemented methodology confirmed with the results from the original 

analysis (Fig 2.). The major aim of this research was to investigate the limitations of short 

time series and the methodology’s performance on many different scenarios regarding those 

limitations. 81 scenarios were analyzed in this study. All the scenarios but 4 of them showed 

positive (and expected) results. The methodol-ogy can detect differences very well as 

sensitivity level was very high even with a small change in the effect sizes (Fig. 3). This 

detection of very small differences between the models can be unrealistic for a real biological 

data set where the noise level is much higher than that of the one used for the analysis. As the 

profiles simulated for the study have an amplitude of 100, the signal to noise was about 

100/3=33.3 which is very high for biological data. Thus, the detection of a very small difference 

between the models may be possible because of the low noise level. However, as the 

methodology was successfully applied to a toy data set and a real biological data set with a 

higher level of noise, the methodology has a good performance for data sets with noise. Also, 

sample sizes had the expected effect on sensitivity, but the values did not decrease by a huge 

amount (Fig. 4.). The biggest change from the highest sensitivity value (1.0) to the lowest 

(0.55) was 0.45 for the Gaussian model. However, for the other models, the sensitivity value 

decreased to approximately 0.8. Thus, if the researcher has at least 10 replicates and models 

with a detectable difference (can be very small as ones in Fig. 3.), the results suggest that 

regardless of the complexity of the model 0.8 sensitivity can be expected. However, analyses on 

the number of time points showed a much drastic change in sensitivity values for the logistic 

and Gaussian models (Fig. 5.). The possible explanation for such a drastic decrease in 

sensitivity is that these models are more complex as they have regions of stable behaviors 

(either at 0 or at its plateau) and dynamic behaviors.
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Figure 6: Inferred Networks. Top left panel is correlation network. It has edges of only average correlation
coefficient greater than 0.8. The top right panel and bottom panel are the differential networks. The bottom is
the network with only significant edges (average p-adjusted values less than or equal to 0.05), and the top right
one is the network of non-significant edges. The width of the edges for the differential network represents how
significant (or not significant the p-value is). Thicker edges represent smaller p-adjusted values (more significant).
The nonsignificant network was presented to show that it is not identical to the correlation network. The colors
represent if the relationship is negatively associated (red) or positively associated (green). The differential networks
are in force-directed layouts.
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Thus, if the number of time points is too small, so the measurements are from the stable area 

of the model, then the difference will not be detected. From the analysis, the underlying 

mechanisms or models can be deduced with confidence for time series of at least 10 time 

points. Further investigation is needed on why decay model, although it also has a stable 

region, did not result in a similar behavior in its sensitivity with respect to a change in the 

number of time points. Also, further investigation on the non-uniform sampling is necessary as 

the methodology unexpectedly performed poorly with the manual time sampling (Table 4.). 

One possible explanation for the unexpected result is that the manual sampling was done 

incorrectly. Application on real experimental data was also successful as it drew the expected 

metabolites as the significantly different metabolites. For those significantly different 

metabolites, networks between them were in-ferred. Correlation network shows a similarity of 

time trajectories. The same metabolites but with different NMR signals are found to be 

correlated (have similar time trajectories) by the inference tool (Fig. 6). This is expected as 

they are the same molecules (with different concentration), so they should be regulated by the 

same mechanisms.

The differential network is interesting and it provides an additional layer of information. It 

highlights signifi-cantly altered associations between variables from controls and cases. It can 

be used as a hypothesis generator as possible changes in interactions of the variables with 

respect to a condition can be highlighted by the methodology. For instance, Lac 4.11 (lactate) 

has negative associations with most of its interacting partners for the significantly differential 

network (Fig. 6). Lactate is known to be involved in energy (glucose) metabolism (Li et  al.,  

2011). Thus, regarding Schistosomiasis, the mice with the disease can have significantly altered 

glucose metabolism, so its relationship between lactate and other metabolites can be a possible 

biomarker.
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In fact, Li et al. suggested higher lactate levels in mice as the discriminating feature of 

the infection. Also, a recent study by Howe and colleague suggested that lactate assay can 

determine the Schistosoma mansoni viability in human (Howe et al., 2015). Although there 

are many studies highlighting the association between the level of lactate and 

Schistosomiasis, associations between lactate and its interacting partners regarding the 

disease have not been thoroughly investigated. Thus, further studies on lactate and its 

interacting metabolites can discover a new drug target or a new biomarker for 

Schistosomiasis.

As this methodology has a novel approach, the conclusions made using this method can be 

quite different from the ones made by using other methodologies. Thus, it is very important to 

understand the similarities and differences in the approaches to use the appropriate 

methodology for a specific situation (experiment) and correctly comprehend the results. Smilde 

et al. compared many methods such as for modeling metabolomics time series data (Smilde et 

al., 2010). The methodologies do not consider sequential ordering of the data, so they treat the 

data as independent static observations. Also, they used a dataset with the very high number of 

time points (145), which is unusual for many biological time series data. Smilde et al. 

suggested that the methods that they used are not suitable to model a new biomarker (they are 

more suitable for modeling pre-selected metabolites). Our method can be used to model a new 

biomarker using the differential analysis to highlight significantly different variables and 

network inferences to highlight interactions between variables. Berk et al. used smoothing 

splines to incorporate sequential ordering in the process of analysis. In fact, the analysis uses 

the fitted curves as the observations (rather than each time point measurements as the 

observations). However, as the method was at its infancy, it can often overfit a time trajectory 

with small replicates as it determines each smoothing factor for each time t rajectory. Our 

method implements smoothing splines as well, but it uses clustering of time series to determine 

a smoothing factor for the members of the cluster. This clustering approach solved the 

overfitting issue as it can detect the differences between parabola model of the toy data set 

(Fig. 2). 28



5 Conclusion

In this study, a novel clustering-based smoothing splines method for omics time series 

analysis was implemented, extended, and tested. It was extended to included network 

inference features. It was tested for its sensitivity for 81 scenarios where parameters for time 

series models were varied. The sensitivity analysis was mainly to investigate the 

characteristics of short time series which are limitations of omics time series. The result 

suggested that the methodology can detect a small difference and has a good performance 

regarding variations in the number of samples. The methodology was successfully applied 

to a real experimental data set and highlighted a potential biomarker. Thus, the novel 

method can be used to model unknown biomarkers or to generate hypothesis for biological 

time series.

29

The main advantage of the methodology is that it can detect a small difference between 

models. Also, it can be used on a short time series with a small number of replicates. Although 

the method’s performance is heavily dependent on the number of time points, models with the 

number of time points greater than 10 should be enough. The novel methodology can be used 

to model new biomarker and to highlight interesting interactions between variables such as 

genes or metabolites.

Further investigation on other characteristics of short time series can provide a more 

rigorous and holistic overview of the performance of the analysis methodology. A number of 

time points and non-uniform time point sampling can be tested with more scenarios. 

Implementation of smooth splines in network inference can also be worked in the future.
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