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Abstract 

In this paper, we introduce the benchmark 
datasets named CLUB (Chemical 
Language Understanding Benchmark) to 
facilitate NLP research in the chemical 
industry. We have 4 datasets consisted of 
text and token classification tasks. As far as 
we have recognized, it is one of the first 
examples of chemical language 
understanding benchmark datasets 
consisted of tasks for both patent and 
literature articles provided by industrial 
organization. All the datasets are internally 
made by chemists from scratch. Finally, we 
evaluate the datasets on the various 
language models based on BERT and 
RoBERTa, and demonstrate the model 
performs better when the domain of the pre-
trained models are closer to chemistry 
domain. We provide baselines for our 
benchmark as 0.7818 in average, and we 
hope this benchmark is used by many 
researchers in both industry and academia. 
The CLUB can be downloaded at 
https://huggingface.co/datasets/bluesky333
/chemical_language_understanding_bench
mark. 

1 Introduction 

Transformer is the prevalent network architecture 
in natural language processing (NLP) (Vaswani et 
al., 2017). It uses self-attention to capture each 
word’s influence on another in a given text. 
Leveraging this architecture, recent advances in 
pre-training language models has reached state-of-
the-art performances on many NLP benchmark 
datasets, including results that surpassed human 
performance (Wang et al., 2019). Such 
advancements in language models and NLP 
technologies can potentially streamline and 
simplify the labor-intensive work for the literature 
and patent analysis, which are crucial in the 
research and development domain.  

The benchmark datasets such as GLUE and 
SuperGLUE played a pivotal role in facilitating 
the advancement of NLP using language models 
(Wang et al., 2018 and Wang et al., 2019). This 
has inspired efforts to create benchmark datasets 
in the science domain as well (Yu Gu et al., 2020). 
However, these attempts are limited within the 
field of biology and medicine. 

In chemistry, there are few datasets available, 
however, as far as we know there are no 
benchmark datasets that include tasks for both 
literature articles and patents (Mysore et al., 2019, 
Friedrich et al., 2020, He et al., 2021). Given the 
predominant reliance on patents in the chemical 
industry’s research, especially in the early stages 
of product development, it is important to have 
datasets with patent documents to enable language 
models to comprehend the distinctive patent 
writing style, thereby performing better on tasks 
with patent documents.  

On the other hand, academic literature often 
serves as the source of information that leads to 
new ideas for experimentation. Thus, it is critical 
to build a language model that understands both 
literature articles and patents and benchmark 
datasets with texts from both patents and papers 
for the evaluation.  

In this paper, we present Chemical Language 
Understanding Benchmark (CLUB) to facilitate 
NLP research in the chemical industry, especially 
the language model pre-training. CLUB consists of 
two datasets for patents and two datasets for papers. 
In terms of tasks, it includes two datasets for token 
classification such as chemical named entity 
recognition, and two datasets for text classification 
such as patent area classification. All these datasets 
are internally made by chemists. We do not rely on 
any preexisting publicly available datasets or 
shared tasks. Finally, we provide the performance 
of various language models including the ones pre-
trained with chemistry literature articles and 
patents as the baselines for our benchmark datasets. 
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Tasks Class Group  
(source corpus) 

 Sample 
Type 

(Number) 

Average 
token 
length 
(std) 

Class name Definition Train Dev 

Text  
CLS 

PETRO-
CHEMICAL  

(Patent)  

Paragraph 
(2,775) 

448.19 
(403.81) 

Household Patents for products used in 
household such as PET bottles 436 120 

Construct Patents for products used in 
construction such as PVC pipes 77 25 

Automobile Patents for products used in 
automobile such as Tires 312 89 

HouseConst Patents for products used in 
household and construction 481 93 

IndustConst Patents for products used in 
industrial and construction 274 62 

Catalyst Patents for catalyst used for 
production 334 94 

Process Patents for production process of 
the products 306 72 

RHEOLOGY 
(Journal)  

Sentence 
(2,017) 

55.04 
(16.46) 

Biodegrad_Poly biodegradable polymer (plastic 
material) 553 151 

Poly_Struc 
the crystal structure of polymer 

which is related with mechanical 
properties  

421 105 

Biodgrad_Prop biodegradable property of 
polymer  470 97 

Mechanical_Prop mechanical property of polymer  90 31 

Rheological_Prop 
rheological property of polymer 
which is related with polymer 

processability  
78 19 

Token  
CLS 

CATALYST 
(Patent)  

Sentence 
(4,663) 

42.07 
(14.59) 

Precatalyst Pre-catalyst form of metallocene 
catalyst  365 71 

Olefin 

Include monomers and 
comonomers that participate in 

the synthesis of supported 
catalyst  

947 153 

Solvent A solvent that creates a reaction 
environment  1,287 356 

Additive 

Additives necessary for the 
catalyst synthesis reaction 

include scavengers and 
cocatalysts.  

402 131 

Support Support material for synthesis 417 83 

BATTERY 
(Journal)  

Sentence  
(3,750) 

40.73 
(10.79) 

Cathode_Material 

Lithium compound used for 
cathode electrode among the 
components of lithium ion 

battery 

1,411 402 

Coating_Material 

Materials coated for the purpose 
of improving structural stability 

and chemical resistance of 
cathode materials  

1,510 359 

Coating_Method 
Method for coating the coating 
material on the surface of the 

cathode material  
409 134 

Table 1: CLUB datasets for text and token classification (CLS). 
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2   Tasks 

The CLUB Benchmark is created from scratch to 
evaluate language models that understand the fields 
of chemistry and materials science. The benchmark 
dataset includes two types of tasks: text 
classification and token classification. To evaluate 
the representation power of the language model for 
both patents and literature articles, each task 
consisted of a dataset created from the patent text 
and a dataset created from the paper text. Various 
topics such as polymers, rheology, catalysts, and 
batteries were selected to evaluate different fields 
of chemistry and materials science. The detailed 
composition of the data set is summarized in Table 
1. 

2.1 Text Classification 

Text classification task is to assign a sentence or 
document to a proper class. In this paper, we 
present two classification datasets: RHEOLOGY 
for sentence classification and 
PETROCHEMICAL for document classification. 
These datasets comprise corpora from both 
patents and journal articles with a focus on the 
topics of polymers, rheology, and overall 
petrochemicals. Each dataset is available in JSON 
format with “id”, “sentence”, and “labels” as keys. 
 
RHEOLOGY sentence classification dataset 
contains the five groups that represent the 
polymer structures and properties, especially for 
biodegradable polymers. It consists of 2,017 
sentences collected from the research paper. Each 
sentence of the RHEOLOGY classification 
dataset is annotated by experts manually. The 
detailed explanation of each group is presented in 
Table 1.  
 
PETROCHEMICAL dataset categorizes patents 
into seven groups within the petrochemical 
industry. Each group of patents accounts for 
important parts of the industry. The petrochemical 
industry uses catalysts to make the final polymer 
products for different applications such as PET 
bottles (household applications), rubber 
(automobile applications), and PVC plastics 
(construction applications). This production is 
done on a factory scale, so it has its production 
process. The seven groups consist of 5 
applications: 1) household, 2) automobile, 3) 
construction, 4) household & construction, and 5) 
automobile & construction. The other two groups 
are catalysts and processes. 

2.2 Token Classification 

Token classification, which includes named entity 
recognition task, identifies tokens belonging to 
defined classes. Considering our interests, we 
defined the CATALYST class group and the 
BATTERY class group as shown in Table 1. We 
created the named entity recognition benchmark 
dataset based on these definitions. The labeling 
was performed by expert researchers with over 
five years of experience in relevant fields. The 
labeling was done in IOB format (inside, outside,  
beginning). The labeled data was then converted 
into JSON format with “id”, “tokens”, and “labels” 
as keys. 

We preprocess the token classification datasets 
to adjust the sentence length to be less than the 
maximum sequence length. As for named entity 
recognition, each token has labels, and tokens that 
come after the maximum sequence length would 
be discarded. Thus, the model would not be able 
to learn from those discarded tokens. We 
minimized this issue by making the distribution of 
the sequence length more like the gaussian 
distribution (Appendix A). 

 
CATALYST is a dataset for recognizing 
materials involved in catalyst synthesis reactions 
in the full text of patents. Pre-catalyst, additive, 
olefin, solvent, and supporting material are 
substances that participate in this reaction, and 
these are defined as classes. “Pre-catalyst” is the 
main substance to make the catalyst. “Additives” 
are added to make the polymer with different 
characteristics. “Olefin” is the monomer that 
makes the polymer using the catalyst. “Solvent” is 
for the polymerization of the monomer to the 
polymer for the catalyst. “Supporting material” is 
used to support the catalyst to do the 
polymerization better as well as more stable. 
 
BATTERY is a dataset for recognizing cathode 
materials from literature articles related to 
lithium-ion batteries including all-solid-state 
batteries. There are four key components of a 
battery: cathode material, anode material, 
separator, and electrolyte. “Cathode material” 
refers to the lithium compound used in the 
positive electrode of a battery and is the most 
important element in a battery because it has a 
decisive effect on the energy density, power 
output, and cycle life of the battery. This dataset 
also has "coating material" and "coating method" 
classes which are material and method to coat the 
surface of the cathode material.  
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3 Dataset Statistics 

All datasets have been divided into a training set 
and a development set (also known as the 
evaluation set), following an 80/20 split ratio.  

3.1 PETROCHEMICAL dataset 

The PETROCHEMICAL dataset is composed of 
2,775 paragraphs.  As the dataset is created with 
titles, abstracts, and claims of patents, so it has the 
average paragraph length of 448.19 tokens, which 
is considerably longer than the other three datasets. 
Also, the standard deviation for the paragraph 
length is 403.81 tokens, which is also larger than 
the others. For the seven classes of the dataset, the 
respective counts of paragraphs are as follows: 
“Household” – 556, “Construct” – 102, 
“Automobile” – 401, “HouseConst” – 574, 
“IndustConst” – 336, “Catalyst” – 428, and 
“Process” – 378. 

3.2 RHEOLOGY dataset  

The RHEOLOGY dataset is made up of 2,017 
sentences with an average sentence length of 
55.03 tokens.  The standard deviation of the 
sentence length is 16.46 tokens. 704 sentences 
were labeled as “Biodegrad_Poly” class and 526 
sentences were labeled as “Poly_Struc”. The 
“Biodegrad_Prop”, “Mechanical_Prop”, and 
“Rheological_Prop” classes, which are classes 
related to material’s properties, were labeled with 
567, 121, and 97 sentences, respectively. 

3.3 CATALYST dataset  

The CATALYST dataset consists of 4,663 
sentences. The average sentence length is 42.07 
tokens with 14.59 tokens for standard deviation. 
“Solvent” class was labeled the most with 1,643 
times, followed by “Olefin” class which as labeled 
1,100 times. “Precatalyst”, “Addtive”, and 
“Support” were labeled 436, 533, and 500 times, 
respectively. 

3.4 BATTERY dataset  

The BATTERY dataset consists of 3,750 
sentences, and the average sentence length is 
40.73 tokens with 10.79 tokens as standard 
deviation. The token classification breakdown 
shows that “Cathode_Material” and 
“Coating_Material” classes were labeled 1,813 
times and 1,869 times, respectively. Meanwhile, 
the “Coating_Method” class was 543 times. 

4 Methods 

4.1 Baseline Models 

BERT-Base We use the BERT-base weights 
released on Hugging Face model repository 
(Devlin et al., 2018). Both cased and uncased 
versions of the model are used. We refer to each 
version as BERT-cased and BERT-uncased 
respectively throughout our papers. The model is 
pre-trained with a corpus made up of BooksCorpus 
and text parts of English Wikipedia for 1 M steps. 
The corpus is about 16GB. The pre-training batch 
size is 256 sequences. This model utilizes a 
wordpiece vocabulary. The vocab size is 28,894. 
 
BioBERT We use BioBERT-v1.2 weights released 
on Hugging Face model repository (Lee et al., 
2020). This is a BERT-base-cased model pre-
trained with PubMed abstracts from the BERT-
base-cased initial checkpoints. It was trained for 
200K steps on PubMed abstracts, 270K steps on 
PubMed Central (PMC) full texts, and another 1 M 
steps on PubMed abstracts. The pre-training corpus 
is about 25GB. The pre-training batch size is 192. 
As a continued pre-trained model, it uses the same 
vocabulary as the BERT-base-cased model.  
 
SciBERT We use sciBERT-scivocab-uncased 
released on Hugging Face model repository 
(Beltagy et al., 2019). This is a pre-trained BERT 
model with 1.14 M Semantic Scholar papers, 
which is comprised of computer science (18%) and 
biomedical domain (82%). It differs from 
BioBERT as it is pre-trained from scratch. The 
papers are full texts and resulting in a corpus size 
of 20GB. The pre-training batch size and steps are 
unknown. It has its own wordpiece vocabulary 
made from the pre-training corpus. The vocabulary 
has more science terms. The vocab size is 30,990. 
 
RoBERTa We use RoBERTa-base model released 
on Hugging Face model repository (Liu et al., 
2019). It is an improvement of BERT model with a 
larger pre-training dataset and better optimized 
hyperparameter settings. The model is pre-trained 
with a 160GB corpus made up of BERT pre-
training corpus plus News and Web contents 
crawled. It is trained for 1 M steps. The pre-training 
batch size is 256 sequences. The model uses byte 
pair encoding (BPE) vocabulary, which is different 
from BERT’s wordpiece vocabulary. The vocab 
size is 50,000. 



5 
 
 

RoBERTa-PM-M3 We use RoBERTa-base-PM 
weights released on Hugging Face model 
repository (Lewis et al., 2020). It is a RoBERTa-
base model pre-trained with a text corpus made of 
27GB of PubMed abstracts, 60GB of PMC full 
texts, and 3.3 GB of the Medical Information Mart 
for Intensive Care (MIMIC-III). The model is 
trained for 500K steps on the corpus with a batch 
size of 8,192 sequences. It uses byte-pair encoding 
vocabulary made from the corpus, so it has a 
different BPE encoding vocabulary from 
RoBERTa-base. The vocabulary has more 
biomedical terms. The vocab size is 50,000. 
 

4.2 Pre-training 

For the chemistry pre-training, we gathered a 
large amount of chemistry patents and literature 
articles to train two different versions of models.  
 
RoBERTa-lit We use RoBERTa-PM-M3 
weights as the initial checkpoint to pre-train the 
model with chemistry articles. We collected the 
abstracts of the articles using Open Academic 
Graphs and used the chemistry field of study to 
filter the ones that belong to the chemistry domain 
(Tang et al., 2008 and Sinha et al., 2015). For the 
filtered ones, all the abstracts were used as the 
training corpus. We train the model with the 
corpus for 1 epoch.  
 
RoBERTa-lit-pat We use RoBERTa-lit weights 
as the initial checkpoint to pre-train the model this 

time with chemistry patents. We collected the 
patents using USPTO BulkDownload. We filtered 
the chemical patents using the CPC code. For the 
filtered ones, abstracts, claims, and embodiment 
texts were used as the training corpus together 
with the RoBERTa-lit’s corpus. We train the 
model with the corpus for 1 epoch.  
 
RoBERTa-lit and RoBERTa-lit-pat were pre-
trained with NVIDIA V100 GPU and follows the 
pre-training setup of RoBERTa-PM-M3 except 
the training batch size, which was of 192. We also 
used mixed precision for training. We used the 
masked language model objective for the pre-
training.  
 
We expect that by pre-training the models with 
chemistry data, the models can learn the chemistry 
domain knowledge better and thus perform better 
on the CLUB benchmark. 
 

4.3 Finetuning Language Models 

For each dataset, we fine-tuned each models for 
10 epochs with a 5e-05 learning rate on a single 
V100 GPU. We used 0.1 warm-up ratio, and 
cosine with restarts as the learning scheduler type. 
The training batch size was 128 and the evaluation 
batch size was 128. The maximum input length 
was 256. AdamW was used as the optimizer with 
a weight decay of 0.01. We used mixed precision 
for efficient training. We fine-tuned the model for 
10 different seed initializations. 

 Text classification (Accuracy) Token classification (F1)  

Task RHEOLOGY PETRO- 
CHEMICAL 

CATALYST BATTERY Average 

BERT-cased 0.7970 0.8099 0.6601 0.7532 0.7550 

BERT-uncased 0.7921 0.8105 0.6944 0.7571 0.7635 

RoBERTa 0.7958 0.7990 0.6899 0.7658 0.7626 

BioBERT 0.7978 0.8086 0.7092 0.7636 0.7698 

SciBERT 0.7938 0.8045 0.7314 0.7602 0.7724 

RoBERTa-PM-M3 0.7983 0.8079 0.7194 0.7815 0.7767 

RoBERTa-lit 0.8017 0.8126 0.7332 0.7772 0.7811 

RoBERTa-lit-pat 0.7968 0.8205 0.7323 0.7777 0.7818 

Table 2: Performance of the model for the benchmark tasks. The evaluation for the text classification tasks 
was done using accuracy and the evaluation of the token classification tasks was done using macro-average 

of F1 scores. The evaluation result is the average of performances over ten runs. 
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4.4 Evaluation 

We evaluated all models using the accuracy for 
text classification tasks and the macro-average F1 
score for token classification tasks. We chose the 
accuracy as the evaluation metric for the text 
classification due to its interpretability in 
measuring the effectiveness of the models. For 
token classification tasks, the use of the IOB 
scheme, which resulted in the “O” label being the 
dominant class, limited us from using the 
evaluation metric as text classification tasks. To 
provide a more balanced evaluation, we computed 
the F1 score of each token class excluding the “O” 
class, and used the macro-average of these F1 
scores as the evaluation metric. For both types of 
tasks, the performance was averaged over ten runs 
with different seed initializations to reduce 
variance caused by randomness. 

5 Results and Discussion  

The performance of each model on the benchmark 
tasks is shown in Table 2. In general, our 
RoBERTa-lit-pat model outperformed the other 
models on average across the tasks. The result of 
BioBERT models pre-trained with a bio-related 
corpus was better than that of BERT base models, 
highlighting the impact of domain specific pre-
training. SciBERT model pre-trained with a broad 
scientific literature articles performed well, 
especially in CATALYST task, though it still had 
a lower performance than RoBERTa models pre-
trained with chemistry corpus. RoBERTa-PM-M3 
model outperformed other models in the 
BATTERY task, but its overall performance was 
lower than that of the RoBERTa-lit-pat model. 

In the text classification task, RoBERTa-lit 
model was the best model in the RHEOLOGY task 
and RoBERTa-lit-pat model score the highest in the 
PETROCHEMICAL task. This suggests that 
inclusion of patents in pre-training yields better 
performance in tasks with patent documents. As the 
PETROCHEMICAL dataset includes titles, 
abstracts, and representative claims of patents, the 
terminology used in the dataset is quite different 
from the terminology used in other datasets made 
up of literature articles. This is due to the nature of 
patents to protect an invention, leading them to be 
written in a more general manner to encompass a 
broader patent space.  

In the CATALYST task, it was very interesting 
that RoBERTa-lit model, solely pre-trained on 
academic papers, showed the best results in the task 

with patents. This task involved labeling only the 
embodiment section of the patent. The terminology 
used in the embodiment part of the patent is closer 
to academic language than the language used in 
patent claims. This could explain why a model 
trained only on articles could perform better in this 
task.  

For the BATTERY task, RoBERTa-PM-M3 
model had the best performance, closely followed 
by RoBERTa-lit-pat model. Notably RoBERTa-lit 
and RoBERTa-lit-pat models still showed good 
average performance despite only being pre-
trained for one epoch. It is plausible that the 
performance of RoBERTa-lit-pat improves further 
with additional training epochs. Due to our GPU 
infrastructure limitations, we leave this for future 
work. 

6 Conclusion 

Chemical Language Understanding Benchmark 
(CLUB) is the first benchmark in the chemistry 
industry aimed at chemical language model 
evaluation with tasks for both patents and journal 
articles. The introduction of this benchmark is 
expected to catalyze research in natural language 
processing, particularly in information extraction, 
within the chemistry domain. 

In the course of establishing baseline 
performance for the CLUB, we tested existing pre-
trained models as well as our novel pre-trained 
models. Remarkably, the RoBERTa model pre-
trained on cheimcal patents and literature articles, 
reached the highest average score, 0.7818. This 
performance highlights the advantage of pre-
training models with a corpus closely aligned with 
the target domain. 

Our benchmark provides a powerful tool for 
evaluating language models’ learning capacity in 
the chemistry context. In addition, the tasks in our 
benchmark can be leveraged to accelerate the 
literature and patent analysis by automatically 
extracting information such as new chemical 
molecules and experiment settings.  

Thus, these tasks can be the foundation of an 
information extraction based expert system. This 
system would generate structured knowledge from 
a large volume of papers and patents and help 
researchers to conduct their experiments on time 
without falling behind the research trends.  

Our benchmark sets the foundation for future 
advancements in chemical language understanding. 
It contributes to the acceleration of scientific 
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discovery in the field by integrating natural 
language processing into chemical research and 
development. 

Limitations 
While the CLUB provides a robust benchmark for 
evaluating language models in the context of 
chemistry, it is not without its limitations. The 
present version of CLUB only includes two types 
of tasks: token classification and text classification. 
This constraint arises primarily from the manual 
labeling process which involved domain experts. 

However, we aim to extend the benchmark in the 
future to include a wider range of tasks such as 
summarization, question answering, and sentence 
similarity assessments. We are particularly 
interested in the sentence similarity task for patents 
as this could be leveraged for identifying potential 
patent infringements. 
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A Adjust sentence length 

Figure 1. shows the distribution of sentence lengths 
in the dataset before and after the preprocessing. 
After adjusting the sentence length, the sequence 
length distribution follows more of a Gaussian 
distribution than before. In the case of CATALYST 
dataset, the number of sentences was reduced from 
12,368 to 4,663. However, in the case of 
BATTERY dataset, there was no change in the 
number of the sentences. We made this 
preprocessing to minimize the number of tokens 
that come after the maximum sequence.  
 
 

 
 

 

Figure 1. Distribution of sequence length 
before and after sentence adjustment in 

token classification task datasets 


